Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Disaster Med Public Health Prep ; 13(2): 165-172, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29717685

RESUMO

ABSTRACTThis study analyzed and assessed publication trends in articles on "disaster medicine," using scientometric analysis. Data were obtained from the Web of Science Core Collection (WoSCC) of Thomson Reuters on March 27, 2017. A total of 564 publications on disaster medicine were identified. There was a mild increase in the number of articles on disaster medicine from 2008 (n=55) to 2016 (n=83). Disaster Medicine and Public Health Preparedness published the most articles, the majority of articles were published in the United States, and the leading institute was Tohoku University. F. Della Corte, M. D. Christian, and P. L. Ingrassia were the top authors on the topic, and the field of public health generated the most publications. Terms analysis indicated that emergency medicine, public health, disaster preparedness, natural disasters, medicine, and management were the research hotspots, whereas Hurricane Katrina, mechanical ventilation, occupational medicine, intensive care, and European journals represented the frontiers of disaster medicine research. Overall, our analysis revealed that disaster medicine studies are closely related to other medical fields and provides researchers and policy-makers in this area with new insight into the hotspots and dynamic directions. (Disaster Med Public Health Preparedness. 2019;13:165-172).


Assuntos
Medicina de Desastres/tendências , Bibliometria , Medicina de Desastres/instrumentação , Medicina de Desastres/estatística & dados numéricos , Desastres/estatística & dados numéricos , Humanos
3.
Bull Environ Contam Toxicol ; 95(6): 784-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419249

RESUMO

Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (<1.26 mg kg(-1)), with a TF value (the ratio of Cd concentration in stem to root) above 1. Energy dispersive X-ray microanalysis indicated cotton leaf transpiration played a key role in extracting soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.


Assuntos
Cádmio/metabolismo , Gossypium/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Cádmio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(8): 1819-22, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-18975811

RESUMO

The skin-core evolvement of the carbon fibers was studied as a function of heat-treatment temperature though the analysis of Raman spectroscopy of the carbon fibers surface and core. It was found that the change of the Raman spectra of the carbon fibers core was similar to that on the surface with the increase in heat-treatment temperature. At 1600 degrees C, the Rs and Rc values were almost equal, indicating that the degrees of the graphitization of the carbon fibers surface and core were almost uniform. The Rs and Rc values decreased dramatically with the increase in heat-treatment temperature, and Rs decreased more. At 2800 degrees C, the Rs value came to 0.429, lowered 77.2%, while the Rc value then came to 1.101, lowered 38.7% only. It implied that the graphitization degree of the carbon fibers was enhanced with increasing the heat treatment temperature, and that of carbon fibers surface was enhanced more. The graphite characters of the carbon of the carbon fibers surface were different from that of the carbon fibers core. The former is close to soft carbon, which is easy to graphitize, while the latter is close to hard carbon, which is difficult to graphitize, and it may be resin carbon Skin-core structure gene Rsc (= Rs/Rc) which denoted the skin-core degree of the carbon fibers was first brought forward and adopted. The Rsc value is between 0 and 1. When the Rsc value is equal to 1, the carbon fibers are homogenous. When the Rsc value is close to zero, there are serious skin-core structures in the carbon fibers. The Rsc value reduced linearly with the increase in heat-treatment temperature, indicating that the homogeneous degrees of the carbon fibers decreased and the skin-core degrees of the carbon fibers increased. The crystallite size of the carbon fibers surface and core increased gradually with the increase in heat-treatment temperature, but the surface's increased more quickly, indicating that the carbon of the carbon fibers surface was easier to graphitize than the carbon fibers core. Serious skin-core structure was one of the reasons that caused the reducing of the carbon fibers' tensile strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...