Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Psychophysiol ; 202: 112376, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844052

RESUMO

Individuals with Internet gaming disorder (IGD) often exhibit an approach bias towards gaming cues compared to non-gaming cues. Although previous studies suggested a positive correlation between approach bias and the severity of game use, the neuropsychological mechanisms that underpin the automatic action tendencies remain largely unexplored. The present study measured event-related potentials (ERPs) in 22 IGD and 23 healthy control (HC) participants who met the inclusion criteria, both groups conducted the Stimulus-Response Compatibility task (SRC), with their ERPs recorded during the task. Results revealed that the IGD group showed a significantly larger approach bias towards gaming cues (avoidance versus approach reaction time) compared to the HC group. The amplitude of P300 significantly increased, whereas N100 significantly decreased for game-approach compared to game-avoid for IGD compared to HC participants. The findings suggested that the enhanced integrated motivational value under compatible conditions as well as increased stimulus-response conflicts under incompatible conditions may contribute to the approach bias in IGD individuals. Further investigation on the intervention is prompted through longitudinal studies.


Assuntos
Eletroencefalografia , Potenciais Evocados , Transtorno de Adição à Internet , Tempo de Reação , Humanos , Masculino , Adulto Jovem , Transtorno de Adição à Internet/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Tempo de Reação/fisiologia , Adulto , Jogos de Vídeo , Adolescente , Sinais (Psicologia) , Desempenho Psicomotor/fisiologia
2.
Genome Biol ; 24(1): 199, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653425

RESUMO

BACKGROUND: Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS: We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS: Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.


Assuntos
Leucemia Mieloide , Transcriptoma , Adulto , Humanos , Criança , Células-Tronco Hematopoéticas , Perfilação da Expressão Gênica , Transdução de Sinais
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1184-1191, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551496

RESUMO

OBJECTIVE: To investigate the correlation between plasmacytoid dendritic cell (pDC) dose in grafts and the occurrence of cytomegalovirus (CMV) infection after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: The clinical data of 80 children who received allo-HSCT in Children's Hospital of Soochow University from August 20, 2020 to June 11, 2021 were retrospectively analyzed. Proportions of DC subsets and T-cell subsets in grafts were detected by flow cytometry in order to calculate infused cell dose of each cell. Weekly monitoring of CMV-DNA copies in peripheral blood for each child were performed after transplantation. The last follow-up date was December 31, 2021. RESULTS: All the children gained hematopoietic reconstitution. CMV infection was observed in 51 children (63.8%±5.4%) within the first 100 days after transplantation, including 2 cases developing CMV disease. Univariate analysis indicated that infused doses of DC and pDC were significantly associated with CMV infection within 100 days after allo-HSCT (P <0.05). Multivariate analysis indicated that a high dose infusion of pDC was an independent protective factor for CMV infection within 100 days after allo-HSCT (P <0.05). By the end of follow-up, 7 children died of transplantation-related complications, including 2 deaths from CMV disease, 2 deaths from extensive chronic graft-versus-host disease, and 3 deaths from capillary leak syndrome. The overall survival rate was 91.2%. CONCLUSION: The pDC in grafts may be associated with early infection of CMV after allo-HSCT, while a high infused pDC dose may serve as a protective factor for CMV infection after transplantation.


Assuntos
Infecções por Citomegalovirus , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Criança , Humanos , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células Dendríticas
4.
Phytomedicine ; 111: 154672, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701994

RESUMO

BACKGROUND: Liujunzi decoction (LJZD), a traditional herbal formula and one of the most commonly used adjuvant medications for the treatment of oesophageal squamous cell carcinoma (ESCC), exerts good antitumor and immunomodulatory activity. However, its specific mechanism of action remains largely unclear. PURPOSE: In order to examine the potential primary and adjuvant antitumor mechanisms of LJZD, both in vitro and in vivo. METHODS: IL-6 and miR-34a inhibitors were used to activate the miR-34a/STAT3/IL-6R feedback loop to observe the effects of LJZD. A humanised mouse model with a functional human immune system was constructed to evaluate the antitumor efficacy of LJZD in vivo on xenograft tumours, which was compared to that of the positive control drug anti-PD-1 monoclonal antibodies (mAb). Finally, a co-culture system of peripheral blood mononuclear and tumour cells in vitro was used to analyse the cytotoxic activity of LJZD on T cells. RESULTS: LJZD significantly interfered with IL-6-induced activation of the miR-34a/STAT3/IL-6R feedback loop in ESCC by restoring the expression of the tumour suppressor miR-34a, and inhibited the proliferation of EC109 oesophageal cancer cells in a dose-dependant manner. Furthermore, LJZD effectively suppressed oesophageal tumour growth in vivo and alleviated organ injury and visceral index. Furthermore, LJZD boosted antitumor immunity by increasing IFN-γ expression and CD8+tumour-infiltrating lymphocytes (TILs) infiltration in the peripheral blood and tumour tissues, respectively, which may be related to a decrease in PD-1, but not PD-L1 expression. Finally, we confirmed that LJZD strengthens the killing ability of T cells by suppressing PD-1 expression in a co-culture system in vitro. CONCLUSION: LJZD exerts excellent antitumor effect by interfering with the miR-34a/STAT3/IL-6R feedback loop and augmenting antitumor immune responses. Which provides new insights into mechanisms for LJZD and sheds light on the multifaceted role of phytomedicine in cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Retroalimentação , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Proliferação de Células , Fator de Transcrição STAT3/metabolismo
5.
Immunol Lett ; 254: 21-29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706923

RESUMO

We aimed to determine the relationship between lymphocyte subsets on day 30 (D30) and prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children. We retrospectively examined the clinical outcomes and lymphocyte subsets on D30 after allo-HSCT in 115 pediatric patients at the Children's Hospital of Soochow University between January 2016 and June 2019. Measurements were performed using flow cytometry on D30. Lymphocyte subsets were compared among the umbilical cord blood (UCB) (n = 22), HLA-matched sibling donor (MSD) (n = 14), haploidentical donor transplantation (HID) (n = 57), and unrelated donor transplantation (UD) (n = 22) groups. The relationships between the frequencies and counts of lymphocyte subsets and clinical outcomes were analyzed. T and B cell counts were the highest in the MSD group compared to the other groups, and natural killer cell counts were the highest in the UCB group. Lymphocyte subsets on D30 after allo-HSCT were correlated with the occurrence of acute (aGVHD) and chronic graft versus host disease (cGVHD). A high frequency of B cells (≥4.65%) was associated with the development of severe aGVHD. High frequencies of CD4+T (≥10.25%) were correlated with extensive cGVHD. Moreover, a high frequency of CD4+T cells (≥9.80%) was correlated with GVHD-free and failure-free survival (GFFS) after allo-HSCT. However, on D30, there were no statistically significant correlations between viral infections and lymphocyte subsets. The frequencies of lymphocyte subsets on D30 after allo-HSCT are good indicators of prognosis after allo-HSCT in children.


Assuntos
Síndrome de Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Estudos Retrospectivos , Doadores não Relacionados , Subpopulações de Linfócitos
6.
iScience ; 25(11): 105292, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304102

RESUMO

Brown adipose tissue (BAT) is a specialized metabolic organ responsible for non-shivering thermogenesis. Recently, its activity has been shown to be critical in systemic metabolic health through its utilization and consumption of macronutrients. In the face of energetically demanding states, metabolic flexibility and systemic coordination of nutrient partitioning is requisite for health and survival. In this study, we elucidate BAT's differential transcriptional adaptations in response to multiple nutrient challenges and demonstrate its context-dependent prioritization of lipid, glucose, and amino acid metabolism. We show that the transcription factor Krüppel-like factor 15 (KLF15) plays a critical role in BAT metabolic flexibility. BAT-specific loss of KLF15 results in widespread changes in circulating metabolites and severely compromised thermogenesis in response to high energy demands, indicative of impaired nutrient utilization and metabolic flexibility. Together, our data demonstrate KLF15 in BAT plays an indispensable role in partitioning resources to maintain homeostasis and ensure survival.

7.
Front Med (Lausanne) ; 9: 988847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300184

RESUMO

NK cells have important functions in resisting cytomegalovirus infection, as they proliferate after viral infection and have certain immunological memory. Here, we report infusion of haploid donor-derived natural killer cells to treat two pediatric patients with Wiskott-Aldrich syndrome (WAS) who were infected with cytomegalovirus after cord blood transplantation (CBT), which successfully cleared the viral infection in both patients.

8.
Ecotoxicol Environ Saf ; 244: 114065, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108434

RESUMO

Willows (Salix spp.) are promising extractors of cadmium (Cd), with fast growth, high biomass production, and high Cd accumulation capacity. However, the molecular mechanisms underlying Cd uptake and detoxification are currently poorly understood. Analysis of the Cd uptake among 30 willow genotypes in hydroponic systems showed that the S. suchowensis and S. integra hybrids, Jw8-26 and Jw9-6, exhibited distinct Cd accumulation and resistance characteristics. Jw8-26 was a high Cd-accumulating and tolerant willow, while Jw9-6 was a low Cd-accumulating and relatively Cd-intolerant willow. Therefore, these two genotypes were ideal specimens for determining the molecular mechanisms of Cd uptake and detoxification. To identify relevant genes in Cd handling, the parent S. suchowensis was treated with Cd and RNA-seq analysis was performed. SsIRT, SsHMA, and SsGST, in addition to the transcription factors SsERF, SsMYB, and SsZAT were identified as being associated with Cd uptake and resistance. Because membrane-localised heavy metal transporters mediate Cd transfer to plant tissues, a total of 17 SsIRT and 12 SsHMA family members in S. suchowensis were identified. Subsequently, a thorough bioinformatics analysis of the SsIRT and SsHMA families was conducted, and their transcript levels were analysed in the roots of the two hybrids. The transcript levels of SsIRT9 in roots were positively correlated with the observed differences in Cd accumulation in Jw8-26 versus Jw9-6. Jw8-26 displayed higher SsIRT9 expression levels and higher Cd accumulation than Jw9-6; therefore, SsIRT9 may be involved in Cd uptake. Gene expression analysis also revealed that SsHMA1 was a candidate gene associated with Cd resistance. These results lay the foundation for understanding the molecular mechanism of Cd transfer and detoxification in willows, and provide guidance for the screening and breeding of high Cd-accumulating and tolerant willow genotypes via genetic engineering.


Assuntos
Metais Pesados , Salix , Poluentes do Solo , Adenosina Trifosfatases/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Genótipo , Humanos , Ferro/metabolismo , Metais Pesados/análise , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Salix/metabolismo , Poluentes do Solo/análise , Fatores de Transcrição/genética
9.
J Psychiatr Res ; 153: 159-166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816975

RESUMO

Impulsivity is both a core symptom and a key psychological mechanism in Internet Gaming Disorder (IGD), and therefore interventions for impulsivity in IGD have both theoretical and practical value. However, previous related interventions only tended to focus on a single factor of impulsivity and achieved inconsistent results. In this study, based on the theory of two-factor model of impulsivity (reward sensitivity and rash impulsiveness), four groups of IGD subjects were recruited to investigate whether there were different effects of single rash impulsiveness or reward sensitivity intervention versus a combined intervention. By comparing the different factors of impulsivity of the four groups before and after a 15-day intervention, the results showed that: (1) compared with the control group, subjects in the Go/No-go training group only had a significantly lower level of rash impulsiveness, subjects in the Stimulus-Response Compatibility (SRC) training group only had a significantly lower level of reward sensitivity, and subjects in the combined training group had significantly lower levels of both impulsivity; (2) among the three intervention groups, only the subjects in the combined training group had significantly lower IGD scores in the follow-up measure. This study indicated that the behavioral training of Go/No-go and SRC were effective in improving rash impulsiveness and reward sensitivity in IGD, respectively, but the intervention effect of the combined training was better than that of the single training.


Assuntos
Comportamento Aditivo , Exantema , Jogos de Vídeo , Humanos , Comportamento Aditivo/psicologia , Internet , Transtorno de Adição à Internet , Recompensa , Jogos de Vídeo/psicologia
10.
J Biol Chem ; 298(6): 101926, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413288

RESUMO

Skeletal muscle dynamically regulates systemic nutrient homeostasis through transcriptional adaptations to physiological cues. In response to changes in the metabolic environment (e.g., alterations in circulating glucose or lipid levels), networks of transcription factors and coregulators are recruited to specific genomic loci to fine-tune homeostatic gene regulation. Elucidating these mechanisms is of particular interest as these gene regulatory pathways can serve as potential targets to treat metabolic disease. The zinc-finger transcription factor Krüppel-like factor 15 (KLF15) is a critical regulator of metabolic homeostasis; however, its genome-wide distribution in skeletal muscle has not been previously identified. Here, we characterize the KLF15 cistrome in vivo in skeletal muscle and find that the majority of KLF15 binding is localized to distal intergenic regions and associated with genes related to circadian rhythmicity and lipid metabolism. We also identify critical interdependence between KLF15 and the nuclear receptor PPARδ in the regulation of lipid metabolic gene programs. We further demonstrate that KLF15 and PPARδ colocalize genome-wide, physically interact, and are dependent on one another to exert their transcriptional effects on target genes. These findings reveal that skeletal muscle KLF15 plays a critical role in metabolic adaptation through its direct actions on target genes and interactions with other nodal transcription factors such as PPARδ.


Assuntos
Fatores de Transcrição Kruppel-Like , Metabolismo dos Lipídeos , Músculo Esquelético , PPAR delta , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Músculo Esquelético/metabolismo , PPAR delta/genética , PPAR delta/metabolismo
11.
Psychophysiology ; 59(3): e13973, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34817871

RESUMO

Internet gaming disorder (IGD) has been classified by the DSM-5 as a condition for further study, and many studies have shown that the occurrence and maintenance of IGD and the automatic detection bias to gaming cues of individuals with IGD may be significantly related. However, whether abstinence, a common intervention method in behavioral addiction, can adjust the automatic detection bias in individuals with IGD and its underlying neural mechanisms is unclear. In this study, we investigated the effects of 7 days of abstinence from gaming on automatic detection bias, negative affect and craving in individuals with IGD with event-related potential technology. A total of 50 IGD subjects were recruited in this study and randomly divided into abstinence and control groups. Visual mismatch negativity (vMMN) was induced using a standard-deviant reversed oddball paradigm, and differences in automatic detection bias, negative affect, and craving between the two groups were recorded and compared at baseline, day 3, and day 7. The results showed that compared with baseline, vMMN, negative affect and craving were significantly enhanced on day 3 and significantly diminished on day 7 in the abstinence group but not in the control group, and the changes in vMMN were significantly correlated with changes in negative affect and craving in both groups. This study demonstrates that abstinence can restore automatic detection bias in individuals with IGD and that abstinence has to last for 7 days to have a significant effect, while recovery may be related to the negative affect and craving.


Assuntos
Viés , Fissura , Sinais (Psicologia) , Transtorno de Adição à Internet , Jogos de Vídeo , Adulto , Comportamento Aditivo , Encéfalo , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
12.
Blood Adv ; 5(7): 1837-1847, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33787864

RESUMO

Treatment refusal and death as a result of toxicity account for most treatment failures among children with acute myeloid leukemia (AML) in resource-constrained settings. We recently reported the results of treating children with AML with a combination of low-dose cytarabine and mitoxantrone or omacetaxine mepesuccinate with concurrent granulocyte colony-stimulating factor (G-CSF) (low-dose chemotherapy [LDC]) for remission induction followed by standard postremission strategies. We have now expanded the initial cohort and have provided long-term follow-up. Eighty-three patients with AML were treated with the LDC regimen. During the study period, another 100 children with AML received a standard-dose chemotherapy (SDC) regimen. Complete remission was attained in 88.8% and 86.4% of patients after induction in the LDC and SDC groups, respectively (P = .436). Twenty-two patients in the LDC group received SDC for the second induction course. Significantly more high-risk AML patients were treated with the SDC regimen (P = .035). There were no significant differences between the LDC and SDC groups in 5-year event-free survival (61.4% ± 8.7% vs 65.2% ± 7.4%, respectively; P = .462), overall survival (72.7% ± 6.9% vs 72.5% ± 6.2%, respectively; P = .933), and incidence of relapse (20.5% ± 4.5% vs 17.6% ± 3.9%, respectively; P = .484). Clearance of mutations based on the average variant allele frequency at complete remission in the LDC and SDC groups was 1.9% vs 0.6% (P < .001) after induction I and 0.17% vs 0.078% (P = .052) after induction II. In conclusion, our study corroborated the high remission rate reported for children with AML who received at least 1 course of LDC. The results, although preliminary, also suggest that long-term survival of these children is comparable to that of children who receive SDC regimens.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Criança , Citarabina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Indução de Remissão
13.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586679

RESUMO

Skeletal muscle is a major determinant of systemic metabolic homeostasis that plays a critical role in glucose metabolism and insulin sensitivity. By contrast, despite being a major user of fatty acids, and evidence that muscular disorders can lead to abnormal lipid deposition (e.g., nonalcoholic fatty liver disease in myopathies), our understanding of skeletal muscle regulation of systemic lipid homeostasis is not well understood. Here we show that skeletal muscle Krüppel-like factor 15 (KLF15) coordinates pathways central to systemic lipid homeostasis under basal conditions and in response to nutrient overload. Mice with skeletal muscle-specific KLF15 deletion demonstrated (a) reduced expression of key targets involved in lipid uptake, mitochondrial transport, and utilization, (b) elevated circulating lipids, (c) insulin resistance/glucose intolerance, and (d) increased lipid deposition in white adipose tissue and liver. Strikingly, a diet rich in short-chain fatty acids bypassed these defects in lipid flux and ameliorated aspects of metabolic dysregulation. Together, these findings establish skeletal muscle control of lipid flux as critical to systemic lipid homeostasis and metabolic health.


Assuntos
Homeostase , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética
14.
Nat Commun ; 11(1): 5872, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208733

RESUMO

Substantial evidence implicates crosstalk between metabolic tissues and the immune system in the inception and progression of obesity. However, molecular regulators that orchestrate metaflammation both centrally and peripherally remains incompletely understood. Here, we identify myeloid Krüppel-like factor 2 (KLF2) as an essential regulator of obesity and its sequelae. In mice and humans, consumption of a fatty diet downregulates myeloid KLF2 levels. Under basal conditions, myeloid-specific KLF2 knockout mice (K2KO) exhibit increased feeding and weight gain. High-fat diet (HFD) feeding further exacerbates the K2KO metabolic disease phenotype. Mechanistically, loss of myeloid KLF2 increases metaflammation in peripheral and central tissues. A combination of pair-feeding, bone marrow-transplant, and microglial ablation implicate central and peripheral contributions to K2KO-induced metabolic dysfunction observed. Finally, overexpression of myeloid KLF2 protects mice from HFD-induced obesity and insulin resistance. Together, these data establish myeloid KLF2 as a nodal regulator of central and peripheral metabolic inflammation in homeostasis and disease.


Assuntos
Fatores de Transcrição Kruppel-Like/imunologia , Doenças Metabólicas/imunologia , Células Mieloides/imunologia , Obesidade/imunologia , Animais , Sistema Nervoso Central/imunologia , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Humanos , Inflamação , Resistência à Insulina , Fatores de Transcrição Kruppel-Like/genética , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/genética , Obesidade/fisiopatologia , Sistema Nervoso Periférico/imunologia
15.
Front Psychiatry ; 10: 824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780973

RESUMO

Individuals with Internet gaming disorder (IGD) show deficits in face processing due to long-term Internet-game social activities based on cartoon faces in the popular online game "Strike of Kings." However, the abnormal neurocognitive mechanism of face recognition and processing in individuals with IGD has not been systematically explored. This study used event-related potential (ERP) methods and the reversed deviant-standard oddball paradigm to comprehensively compare four ERP components, namely, P100, N170, P200, and mismatch negativity (MMN), induced in the unconscious and automatic processing of realistic and cartoon faces in individuals with IGD. Results showed that, with respect to cartoon faces, individuals with IGD exhibited not only P100, P200 and MMN enhancements but also the absence of the N170 dominance effect in the left hemisphere. Our results also demonstrated that individuals with IGD had the advantages of early automatic perception of cartoon faces and automatic detection of changes in "cartoon" features. This study enhances our understanding of the mechanism of IGD from the neurocognitive perspective and provides candidate electrophysiological indicators for the clinical diagnosis of IGD.

16.
J Clin Invest ; 129(6): 2178-2180, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033481

RESUMO

Glucocorticoids (GCs) are essential for proper glycemic control, but in excess, can lead to hyperglycemia and diabetes. In this issue of the JCI, Cui et al. elucidate a mechanism by which GCs regulate gluconeogenesis utilizing the transcription factor Krüppel-like factor 9 (KLF9) in physiology and disease settings. They report that KLF9 is a GC-inducible factor that ultimately increases the transcription of proliferator-activated receptor γ coactivator 1 α (PGC1α), resulting in gluconeogenesis. Given the high incidence of GC-induced diabetes, identification of this signaling axis provides, not only critical scientific insight, but also a foundation for preventative therapies for patients receiving chronic GC treatment.


Assuntos
Gluconeogênese , Hiperglicemia , Crime , Dexametasona , Humanos , Fatores de Transcrição Kruppel-Like
17.
Endocr Rev ; 40(1): 137-152, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307551

RESUMO

Nutrient handling by higher organisms is a complex process that is regulated at the transcriptional level. Studies over the past 15 years have highlighted the critical importance of a family of transcriptional regulators termed the Krüppel-like factors (KLFs) in metabolism. Within an organ, distinct KLFs direct networks of metabolic gene targets to achieve specialized functions. This regulation is often orchestrated in concert with recruitment of tissue-specific transcriptional regulators, particularly members of the nuclear receptor family. Upon nutrient entry into the intestine, gut, and liver, KLFs control a range of functions from bile synthesis to intestinal stem cell maintenance to effect nutrient acquisition. Subsequently, coordinated KLF activity across multiple organs distributes nutrients to sites of storage or liberates them for use in response to changes in nutrient status. Finally, in energy-consuming organs like cardiac and skeletal muscle, KLFs tune local metabolic programs to precisely match substrate uptake, flux, and use, particularly via mitochondrial function, with energetic demand; this is achieved in part via circulating mediators, including glucocorticoids and insulin. Here, we summarize current understanding of KLFs in regulation of nutrient absorption, interorgan circulation, and tissue-specific use.


Assuntos
Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Doenças Metabólicas/metabolismo , Animais , Humanos
18.
PLoS One ; 13(2): e0192376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29408889

RESUMO

Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.


Assuntos
Adaptação Fisiológica , Proteínas de Ligação a DNA/fisiologia , Jejum/fisiologia , Coração/fisiologia , Fatores de Transcrição/fisiologia , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Proteínas de Ligação a DNA/genética , Ecocardiografia , Fatores de Transcrição Kruppel-Like , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Fatores de Transcrição/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-29459900

RESUMO

The role of inflammation in vascular disease is well recognized, involving dysregulation of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained vascular inflammation leads to pathological remodeling that eventually contributes to atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia). Signaling events during vascular inflammation orchestrate widespread transcriptional programs that affect the functions of vascular and circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription factors central in regulating vascular biology in states of homeostasis and disease. Given their abundance and diversity of function in cells associated with vascular inflammation, understanding the transcriptional networks regulated by KLFs will further our understanding of the pathogenesis underlying several pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular disease. Within this review, we will discuss the role of KLFs in coordinating protective and deleterious responses during vascular inflammation, while addressing the potential targeting of these critical transcription factors in future therapies.

20.
Pharmacol Res ; 130: 123-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288718

RESUMO

Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Ritmo Circadiano/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Animais , Jejum/metabolismo , Humanos , Músculo Estriado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...