Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893378

RESUMO

Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Ácidos Graxos Monoinsaturados , Gentamicinas , Ácido Oleico , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Testes de Sensibilidade Microbiana , Metabolômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
2.
Microbiol Spectr ; 11(6): e0161923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882580

RESUMO

IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) infection severely threatens human health due to high morbidity and mortality; it is urgent to develop novel strategies to tackle this problem. Metabolites belong to antibiotic adjuvants which improve the effect of antibiotics. Despite reports of L-glutamine being applied in antibiotic adjuvant for Gram-negative bacteria, how L-glutamine affects antibiotics against Gram-positive-resistant bacteria is still unclear. In this study, L-glutamine increases the antibacterial effect of gentamicin on MRSA, and it links to membrane permeability and pH gradient (ΔpH), resulting in uptake of more gentamicin. Of great interest, reduced reactive oxygen species (ROS) by glutathione was found under L-glutamine treatment; USA300 becomes sensitive again to gentamicin. This study not only offers deep understanding on ΔpH and ROS on bacterial resistance but also provides potential treatment solutions for targeting MRSA infection.


Assuntos
Gentamicinas , Staphylococcus aureus Resistente à Meticilina , Humanos , Gentamicinas/farmacologia , Glutamina , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
3.
Infect Drug Resist ; 16: 4741-4754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496695

RESUMO

Background: The issue of methicillin-resistant Staphylococcus aureus (MRSA) resistant to many antibiotics and causing serious infectious diseases is a growing healthcare concern. Purpose: In recent years, exogenous administration of metabolites in combination with antibiotics can re-sensitize resistant bacteria to antibiotics; however, their effects vary, and their underlying mechanism of action remains elusive. Methods: We assessed the bactericidal effects of the three amino acids in combination with gentamicin in vitro and in vivo. Subsequently, we explored the role of these amino acids on the metabolomics of MRSA using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, we performed the downstream analyses using MetaboAnalyst and Interactive Pathways Explorer. Results: Exogenous threonine showed the best bactericidal efficacy with gentamicin, followed by glycine, wherein serine had no effect. Amino acid treatments mainly up-regulated the metabolites, increased the amino acid abundance, and significantly activated metabolisms; these effects were consistent with the bactericidal efficacy of the three amino acids. Most amino acids participated in the tricarboxylic acid cycle, and threonine supplementation increased the activities of citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, whereas glycine increased activities of citrate synthase and α-ketoglutarate dehydrogenase, and serine did not affect the activities of any of the three key enzymes. We identified 24 biomarkers in the three groups, among which glutamic acid and cysteine showed a gradient decrease and increase, respectively. Subsequent analyses revealed that glutamic acid but not cysteine promoted the bactericidal effect of gentamicin synergistically. Conclusion: Threonine has the best synergistic effect in reversing bacterial resistance compared to glycine and serine. We show that different amino acids combined with an antibiotic mainly affect amino acid metabolism and act via different metabolic regulatory mechanisms, which could help develop effective strategies for tackling MRSA infections.

4.
Can J Microbiol ; 69(9): 328-338, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224563

RESUMO

Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli.


Assuntos
Escherichia coli , Gentamicinas , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/genética , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo , Transcriptoma
5.
J Proteomics ; 277: 104849, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809838

RESUMO

The emergence of antibiotic resistance greatly increases the difficulty of treating bacterial infections. In order to develop effective treatments, the underlying mechanisms of antibiotic resistance must be understood. In this study, Staphylococcus aureus ATCC6538 strain was passaged in medium with and without gentamicin and obtained lab-evolved gentamicin-resistant S. aureus (RGEN) and gentamicin-sensitive S. aureus (SGEN) strains, respectively. Data-Independent Acquisition (DIA)-based proteomics approach was applied to compare the two strains. A total of 1426 proteins were identified, of which 462 were significantly different: 126 were upregulated and 336 were downregulated in RGEN compared to SGEN. Further analysis found that reduced protein biosynthesis was a characteristic feature in RGEN, related to metabolic suppression. The most differentially expressed proteins were involved in metabolic pathways. In RGEN, central carbon metabolism was dysregulated and energy metabolism decreased. After verification, it was found that the levels of NADH, ATP, and reactive oxygen species (ROS) decreased, and superoxide dismutase and catalase activities increased. These findings suggest that inhibition of central carbon and energy metabolic pathways may play an important role in the resistance of S. aureus to gentamicin, and that gentamicin resistance is associated with oxidative stress. Significance: The overuse and misuse of antibiotics have led to bacterial antibiotic resistance, which is a serious threat to human health. Understanding the mechanisms of antibiotic resistance will help better control these antibiotic-resistant pathogens in the future. The present study characterized the differential proteome of gentamicin-resistant Staphylococcus aureus using the most advanced DIA-based proteomics technology. Many of the differential expressed proteins were related to metabolism, specifically, reduced central carbon and energy metabolism. Lower levels of NADH, ROS, and ATP were detected as a consequence of the reduced metabolism. These results reveal that downregulation of protein expression affecting central carbon and energy metabolisms may play an important role in the resistance of S. aureus to gentamicin.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteômica/métodos , Carbono/metabolismo , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Metabolismo Energético , Farmacorresistência Bacteriana , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
6.
Front Pharmacol ; 14: 1133685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762116

RESUMO

Background: Methicillin-resistant Staphylococcus aureus (MRSA) has now become a major nosocomial pathogen bacteria and resistant to many antibiotics. Therefore, Development of novel approaches to combat the disease is especially important. The present study aimed to provide a novel approach involving the use of nucleotide-mediated metabolic reprogramming to tackle intractable methicillin-resistant S. aureus (MRSA) infections. Objective: This study aims to explore the bacterial effects and mechanism of uracil and gentamicin in S. aureus. Methods: Antibiotic bactericidal assays was used to determine the synergistic bactericidal effect of uracil and gentamicin. How did uracil regulate bacterial metabolism including the tricarboxylic acid (TCA) cycle by GC-MS-based metabolomics. Next, genes and activity of key enzymes in the TCA cycle, PMF, and intracellular aminoglycosides were measured. Finally, bacterial respiration, reactive oxygen species (ROS), and ATP levels were also assayed in this study. Results: In the present study, we found that uracil could synergize with aminoglycosides to kill MRSA (USA300) by 400-fold. Reprogramming metabolomics displayed uracil reprogrammed bacterial metabolism, especially enhanced the TCA cycle to elevate NADH production and proton motive force, thereby promoting the uptake of antibiotics. Furthermore, uracil increased cellular respiration and ATP production, resulting the generation of ROS. Thus, the combined activity of uracil and antibiotics induced bacterial death. Inhibition of the TCA cycle or ROS production could attenuate bactericidal efficiency. Moreover, uracil exhibited bactericidal activity in cooperation with aminoglycosides against other pathogenic bacteria. In a mouse mode of MRSA infection, the combination of gentamicin and uracil increased the survival rate of infected mice. Conclusion: Our results suggest that uracil enhances the activity of bactericidal antibiotics to kill Gram-positive bacteria by modulating bacterial metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...