Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 385: 129344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369319

RESUMO

Appropriate fractionation of lignocellulosic biomass into useable forms is a key challenge to achieving an economic bioethanol production. In the present study, four different fractionation strategies of hydrothermal-, NaOH-, ethanol-, and NaOH catalyzed ethanol pretreatment were investigated to compare their abilities of cellulose conversion. Results showed that NaOH catalyzed ethanol pretreatment showed a rather high extent of delignification of 85.92%, which also enhanced the retention of cellulose (92.56%) and hemicellulose (76.57%); while other pretreatments tended to produce cellulose fraction which was insufficient to achieve the whole component utilization. After simultaneous saccharification and fermentation at high solids loading, synergistic maximization of xylose (42.47 g/L) and ethanol (85.74 g/L) output was achieved via alkaline ethanol pretreatment. Lignin characterization information showed that alkaline ethanol pretreatment facilitates the cleavage of ß-O-4 linkage and further converts into arylglycerol. Moreover, less condensed substructure units with high processing activity were also generated in S- and G- lignin.


Assuntos
Lignina , Populus , Lignina/química , Biomassa , Hidróxido de Sódio , Carboidratos , Celulose/metabolismo , Fermentação , Hexoses , Etanol , Populus/metabolismo , Hidrólise
2.
Biotechnol Biofuels ; 12: 227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572494

RESUMO

BACKGROUND: The mixed-feedstock fermentation is a promising approach to enhancing the co-generation of cellulosic ethanol and methane from sugarcane bagasse (SCB) and molasses. However, the unmatched supply of the SCB and molasses remains a main obstacle built upon binary feedstock. Here, we propose a cellulose-starch-sugar ternary waste combinatory approach to overcome this bottleneck by integrating the starch-rich waste of Dioscorea composita Hemls. extracted residue (DER) in mixed fermentation. RESULTS: The substrates of the pretreated SCB, DER and molasses with varying ratios were conducted at a relatively low solids loading of 12%, and the optimal mixture ratio of 1:0.5:0.5 for the pretreated SCB/DER/molasses was determined by evaluating the ethanol concentration and yield. Nevertheless, it was found that the ethanol yield decreased from 79.19 ± 0.20 to 62.31 ± 0.61% when the solids loading increased from 12 to 44% in batch modes, regardless of the fact that the co-fermentation of three-component feedstock was performed under the optimal condition defined above. Hence, different fermentation processes such as fed-batch and fed-batch + Tween 80 were implemented to further improve the ethanol concentration and yield at higher solids loading ranging between 36 and 44%. The highest ethanol concentration of 91.82 ± 0.86 g/L (69.33 ± 0.46% of theoretical yield) was obtained with fed-batch + Tween 80 mode during the simultaneous saccharification and fermentation at a high solids loading of 44%. Moreover, after the ethanol recovery, the remaining stillage was digested for biomethane production and finally yielded 320.72 ± 6.98 mL/g of volatile solids. CONCLUSIONS: Integrated DER into the combination of SCB and molasses would be beneficial for ethanol production. The co-generation of bioethanol and biomethane by mixed cellulose-starch-sugar waste turns out to be a sustainable solution to improve the overall efficacy in biorefinery.

3.
Biotechnol Biofuels ; 11: 329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568729

RESUMO

BACKGROUND: Sugarcane bagasse (SCB) is one of the most promising lignocellulosic biomasses for use in the production of biofuels. However, bioethanol production from pure SCB fermentation is still limited by its high process cost and low fermentation efficiency. Sugarcane molasses, as a carbohydrate-rich biomass, can provide fermentable sugars for ethanol production. Herein, to reduce high processing costs, molasses was integrated into lignocellulosic ethanol production in batch modes to improve the fermentation system and to boost the final ethanol concentration and yield. RESULTS: The co-fermentation of pretreated SCB and molasses at ratios of 3:1 (mixture A) and 1:1 (mixture B) were conducted at solid loadings of 12% to 32%, and the fermentation of pretreated SCB alone at the same solid loading was also compared. At a solid loading of 32%, the ethanol concentrations of 64.10 g/L, 74.69 g/L, and 75.64 g/L were obtained from pure SCB, mixture A, and mixture B, respectively. To further boost the ethanol concentration, the fermentation of mixture B (1:1), with higher solid loading from 36 to 48%, was also implemented. The highest ethanol concentration of 94.20 g/L was generated at a high solid loading of 44%, with an ethanol yield of 72.37%. In addition, after evaporation, the wastewater could be converted to biogas by anaerobic digestion. The final methane production of 312.14 mL/g volatile solids (VS) was obtained, and the final chemical oxygen demand removal and VS degradation efficiency was 85.9% and 95.9%, respectively. CONCLUSIONS: Molasses could provide a good environment for the growth of yeast and inoculum. Integrating sugarcane molasses into sequential cellulosic biofuel production could improve the utilization of biomass resources.

4.
Bioresour Technol ; 258: 295-301, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29555585

RESUMO

In this work, a FeCl3-catalyzed organosolv pretreatment was employed at 160 °C to remove hemicellulose and lignin in sugarcane bagasse leaving the cellulose-enriched residue for enzymatic hydrolysis to sugars. The solubilized hemicellulose fractions consisted more monomer xylose than oligomer xylose. The FeCl3-catalyzed organosolv pretreatment significantly improved the enzymatic hydrolysis, nearly 100% of cellulose components were converted to glucose after pretreatment with 0.05 M FeCl3. Structural analysis was employed to reveal how pretreatment affected the enzymatic hydrolysis. With the addition of Tween 80, the same level of glucose was obtained with 50% reduction of enzyme dosage after 24 h. Furthermore, the influence of Tween 80 on different pretreatment systems was investigated, indicating that the improvement was increased as the lignin content increased, decreased with high enzyme loading and extending hydrolysis time. This work suggested that the addition of Tween 80 could improve the enzymatic hydrolysis, reduce the hydrolysis time and enzyme dosage.


Assuntos
Celulose , Saccharum , Cloretos , Compostos Férricos , Hidrólise , Lignina , Polissorbatos
5.
Bioresour Technol ; 257: 23-29, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29482162

RESUMO

Various mixing ratios of alkali pretreated sugarcane bagasse and starch-rich waste Dioscorea composita hemls extracted residue (DER) were evaluated via simultaneous saccharification and fermentation (SSF) with 12% (w/w) solid loading, and the mixture ratio of 1:1 achieved the highest ethanol concentration and yield. When the solid loading was increased from 12% to 32%, the ethanol concentration was increased to 72.04 g/L, whereas the ethanol yield was reduced from 84.40% to 73.71%. With batch feeding and the addition of 0.1% (w/v) Tween 80, the final ethanol concentration and yield of SSF at 34% loading were 82.83 g/L and 77.22%, respectively. Due to the integration with existing starch-based ethanol industry, the co-fermentation is expected to be a competitive alternative form for cellulosic ethanol production.


Assuntos
Celulose , Dioscorea , Etanol , Saccharum , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...