Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38790271

RESUMO

The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Animais , Suínos/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica/métodos , RNA Circular/genética , Metabolismo dos Lipídeos/genética , Tecido Adiposo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Int Immunopharmacol ; 124(Pt A): 110884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660593

RESUMO

The JAK-STAT pathway plays a crucial role in the signaling cascade associated with various cytokines that have been implicated in the pathogenesis of inflammatory diseases and myeloproliferative neoplasms (MPN). Among the isoforms of JAKs, the JAK2 subtype is primarily responsible for the function of hematopoietic system cells, making it a significant target in the treatment of MPN. However, the precise regulatory role of JAK2 in inflammatory diseases requires further investigation and confirmation. The current study employed a selective JAK2 inhibitor, ZT55, derived from Isatis indigotica roots, to examine its regulatory effects on inflammatory and immune responses in delayed-type hypersensitivity (DTH) and arthritis in mice. To evaluate the efficacy of ZT55 treatment, DNFB-induced DTH and collagen-induced arthritis (CIA) mouse models were utilized. T cells were cultured and subsequently analyzed for proliferation and activation using flow cytometry and EdU assay. Additionally, the maturation and function of dendritic cells were assessed through flow cytometry and ELISA. Our findings indicate that ZT55 significantly reduced DNFB-induced DTH and attenuated inflammation, cartilage degradation, and bone destruction in CIA mice. Moreover, ZT55 was found to inhibit the proliferation and activation of T cells and the maturation of dendritic cells by regulating the JAK2-STAT3 signaling pathway. These results suggest that selectively targeting the JAK2 isoform could have anti-inflammatory and immunosuppressive effects by regulating the adaptive and innate immune responses via the JAK2-STAT3 signaling pathway. Therefore, ZT55 has the potential to be a promising pharmaceutical candidate for the treatment of inflammatory and autoimmune diseases.

3.
Pharmacol Ther ; 227: 107880, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33901504

RESUMO

Inflammasomes are multi-protein macromolecular complexes that typically comprise of three units, a sensor, an adaptor and procaspase-1. The assembly of each inflammasome is dictated by a unique pattern recognition receptors (PRRs) in response to pathogen-associated molecular patterns (PAMPs) or other endogenous danger-associated molecular patterns (DAMPs) in the cytosol of the host cells, and promote the maturation and secretion of IL-1ß and IL-18 during the inflammatory process. Specific inflammasomes are involved in the host defense response against different pathogens, and the latter have evolved multiple corresponding mechanisms to inhibit inflammasome activation. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is the best understood in terms of molecular mechanisms, and is a promising therapeutic target in immune-related disorders. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination of white matter in the central nervous system, increased levels of IL-1ß in the cerebrospinal fluid (CSF) of relapsed patients, and deposition of caspase-1 in the spinal cord. The direct involvement of the NLRP3 inflammasome in the occurrence and development of MS was ascertained in the experimental autoimmune encephalomyelitis (EAE) animal model. In this review, we have focused on the mechanisms underlying activation of the NLRP3 inflammasome in MS or EAE, as well as inhibitors that specifically target the complex and alleviate disease progression, in order to unearth new therapeutic strategies against MS.


Assuntos
Inflamassomos , Esclerose Múltipla , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/fisiologia , Esclerose Múltipla/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...