Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sports Sci Med ; 23(1): 571-580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228767

RESUMO

Basketball victory relies on an athlete's skill to make precise shots at different distances. While extensive research has explored the kinematics and dynamics of different shooting distances, the specific neuromuscular control strategies involved remain elusive. This study aimed to compare the differences in muscle synergies during basketball shooting at different distances, offering insights into neuromuscular control strategies and guiding athletes' training. Ten skilled shooting right-handed male basketball players participated as subjects in this experiment. Electromyographic (EMG) data for full-phase shooting were acquired at short (3.2 m), middle (5.0 m), and long (6.8 m) distances. Non-negative matrix decomposition extracted muscle synergies (motor modules and motor primitives) during shooting. The results of this study show that all three distance shooting can be broken down into three synergies and that there were differences in the synergies between short and long distances, with differences in motor primitive 1 and motor primitive 2 at the phase of 45% - 59% (p < 0.001, t* = 4.418), and 78% - 88% (p < 0.01, t* = 4.579), respectively, and differences in the motor module 3 found in the differences in muscle weights for rectus femoris (RF) (p = 0.001, d = -2.094), and gastrocnemius lateral (GL) (p = 0.001, d = -2.083). Shooting distance doesn't affect the number of muscle synergies in basketball shooting but alters synergy patterns. During long distance shooting training, basketball players should place more emphasis on the timing and synergistic activation of upper and lower limbs, as well as core muscles.


Assuntos
Basquetebol , Eletromiografia , Destreza Motora , Músculo Esquelético , Humanos , Basquetebol/fisiologia , Masculino , Adulto Jovem , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Destreza Motora/fisiologia , Adulto , Desempenho Atlético/fisiologia
2.
Int J Sports Med ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38914131

RESUMO

The present study assessed the impacts of two distinct protocols, static stretching (StS, 4 sets of 30 seconds) and static stretching combined with conditioning contractions (10 repetitive drop jumps) (SC), on neuromuscular response and rate of force development (RFD) in the lower limbs during squat jumps (SJs) at varying initial knee-joint angles (60°,90°,120°). Twelve participants completed three randomized experimental trials (no intervention, StS intervention, and SC intervention). Except for the intervention segments, each trial included standardized warm-ups and SJs at three different angles. Data were collected using a 3-dimensional injury motion capture system, an electromyography (EMG) recording system, and a force platform. The collected EMG data were subjected to amplitude calculations, while force-time data were used for RFD computation. Neither StS nor SC significantly impacted the average or peak EMG amplitudes of the five muscles examined (p>0.05). However, at an initial knee-joint angle of 120°, the StS group demonstrated significantly lower RFD values at three distinct phases (0-50 ms, 50-100 ms, and 0-peakforce) compared to those seen in the SC and control groups (p<0.05). For activities starting with a knee-joint angle of 120°, it is recommended to either avoid StS or combine it with ten repetitive drop jumps to mitigate any potential negative impact on explosiveness.

3.
J Environ Manage ; 352: 119989, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215595

RESUMO

Photocatalytic degradation of organic pollution by biochar was a sustainable strategy for waste water remediation, nevertheless, it still suffers drawbacks like low efficiency due to the poor photocatalytic properties of pristine biochar. Herein, amino groups were grafted on the edge sites/defects of biochar by Friedel-Crafts acylation to enhance the degradation of high concentration dye solutions. The results suggested that the amino groups played an important role in imparting photocatalytic properties to biochar. Owing to the strong Lewis basicity and electron-donating ability of amino groups, their interaction with oxygen-containing functional groups/aromatic structures in biochar was improved, which enhanced the electron exchange ability of biochar under visible light irradiation, resulting in excellent degradation performances of high concentration RhB (∼10 times faster than ungrafted biochar). In this work, amino-grafted garlic peel biochar delivered a new idea for the future direction of biochar-based photocatalysis in wastewater remediation.


Assuntos
Antioxidantes , Produtos Biológicos , Carvão Vegetal , Elétrons , Poluição Ambiental , Luz , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA