Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 563(1): 63-71, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25752288

RESUMO

Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level.


Assuntos
Cactaceae/genética , Catalase/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Sequência de Aminoácidos , Cactaceae/efeitos dos fármacos , Cactaceae/fisiologia , Catalase/metabolismo , Clonagem Molecular , Resposta ao Choque Frio/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo
2.
Gene ; 533(1): 322-31, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076355

RESUMO

Drought is one of the most severe threats to the growth, development and yield of plant. In order to unravel the molecular basis underlying the high tolerance of pitaya (Hylocereus undatus) to drought stress, suppression subtractive hybridization (SSH) and cDNA microarray approaches were firstly combined to identify the potential important or novel genes involved in the plant responses to drought stress. The forward (drought over drought-free) and reverse (drought-free over drought) suppression subtractive cDNA libraries were constructed using in vitro shoots of cultivar 'Zihonglong' exposed to drought stress and drought-free (control). A total of 2112 clones, among which half were from either forward or reverse SSH library, were randomly picked up to construct a pitaya cDNA microarray. Microarray analysis was carried out to verify the expression fluctuations of this set of clones upon drought treatment compared with the controls. A total of 309 expressed sequence tags (ESTs), 153 from forward library and 156 from reverse library, were obtained, and 138 unique ESTs were identified after sequencing by clustering and blast analyses, which included genes that had been previously reported as responsive to water stress as well as some functionally unknown genes. Thirty six genes were mapped to 47 KEGG pathways, including carbohydrate metabolism, lipid metabolism, energy metabolism, nucleotide metabolism, and amino acid metabolism of pitaya. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction (RT-PCR) corroborated the results of differential screening. Moreover, time-course expression patterns of these selected ESTs further confirmed that they were closely responsive to drought treatment. Among the differentially expressed genes (DEGs), many are related to stress tolerances including drought tolerance. Thereby, the mechanism of drought tolerance of this pitaya genotype is a very complex physiological and biochemical process, in which multiple metabolism pathways and many genes were implicated. The data gained herein provide an insight into the mechanism underlying the drought stress tolerance of pitaya, as well as may facilitate the screening of candidate genes for drought tolerance.


Assuntos
Cactaceae/genética , DNA Complementar/genética , Secas , Análise de Sequência com Séries de Oligonucleotídeos , Técnica de Subtração , Sequência de Bases , Primers do DNA , Etiquetas de Sequências Expressas , Genes de Plantas , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...