Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402542, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754914

RESUMO

Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.

2.
ACS Appl Mater Interfaces ; 16(6): 7742-7753, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308589

RESUMO

Presently, piezoelectric materials are gradually playing a significant role within composites to improve the damping and vibrational attenuation capacities of host composites. Previous studies paid attention to isolating the mechanical damping contribution and piezoelectric contribution of polymer-based piezoelectric composites (PPCs). However, reports detailing the piezoelectric damping of such materials have not paid sufficient attention to the technologies and methods to improve the piezoelectric damping of PPCs. In this study, we propose novel damping polyurethane (PU)-based piezoelectric composites with carbon-coated piezoelectric fillers (PZT@C/PU) with improved piezoelectric damping ability. The mechanical damping and piezoelectric damping of composites were theoretically decoupled, and we elaborate on the mechanism enhancing piezoelectric damping through the carbon coating strategy by comparing with the composites with nonpiezoelectric fillers. The as-fabricated core-shell structure having an optimized interface exhibits the proposed PZT@C/PU composite pads with relatively prominent damping ability (loss factor tan δmax = 1.0, tan δRT = 0.3), ductility (400.63%), and sound isolating behavior (transmission loss TL > 23 dB). Moreover, the vibration test results of as-fabricated sandwich structural PZT@C/PU composite damping devices exhibit outstanding vibration attenuating behavior (damping ratio ζ = 0.198). The study herein validates that the carbon shell coated on piezoelectric fillers would effectively increase damping performance of PU-based piezoelectric composites by the enhancement of piezoelectric performance caused by carbon coating piezoelectric fillers, which indicates that this material has potential for future applications in the field of vibration and noise reduction, thereby driving forward and expanding the fundamental understanding in the area of PPCs damping and vibration attenuation.

3.
Chemistry ; 29(2): e202202714, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168665

RESUMO

Acoustic absorption materials play an important role in eliminating the negative effects of noise. Herein, a polyvinyl alcohol (PVA)-assisted freeze-casting was developed for controllably fabricating reduced graphene oxide wrapped carbon nanofiber (RGO@CNF)/graphene oxide composite aerogel. During the freeze-casting, PVA was used as an icing inhibitor to control the size of ice crystals. While the concentration of PVA increased from 0 to 15 mg ⋅ ml-1 , the average pore size of the aerogel was reduced from 154 to 45 µm. Due to the modulation of the pore size and composition, the propagation path and friction loss for sound were optimized, especially at low frequency. For instance, the normalized sound absorption coefficient of RGO@CNF/GO-10 achieves 0.79 (250-6300 Hz). The sample also exhibits a desirable microwave absorbing property whose maximum reflection loss is -47.3 dB (9.44 GHz, d=3.0 mm). Prospectively, this synthetic strategy can be extended to develop other forms of elastic aerogel with a controlled pore size.

4.
ACS Appl Mater Interfaces ; 10(51): 44731-44740, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30462493

RESUMO

The implementation of thin structure for broadband microwave absorption is challenging due to the requirement of impedance match across several frequency bands and poor mechanical properties. Herein, we demonstrate a carbon fiber (CF) reinforced flexible thin hierarchical metastructure (HM) composed of lossy materials including carbonyl iron (CI), multiwall carbon nanotube (MWCNT), and silicone rubber (SR) with thickness of 5 mm and optimal concentration selected from 12 formulas. Optimization for the periodical unit size is applied, and impacts of structural sizes on absorption performance are also investigated. An effective process combining the vacuum bag method and the hand lay-up technique is used to fabricate the HM. Experimental reflectivity of the absorber achieves broadband absorption below -10 dB in 2-4 GHz and 8-40 GHz. The full band in 2-40 GHz is covered below -8 dB. Yielding stress of the HM is increased to 24 MPa with attachment of CF, while the fracture strain of the composite reaches 550%. The soft HM is suitable to adhere to the curved surface of objects needed to be protected from microwave radiation detection and electromagnetic interference. Enhanced mechanical properties make it possible for further practical applications under harsh service environments such as the ocean and machines with constant vibration.

5.
J Mater Chem B ; 3(10): 2119-2126, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262380

RESUMO

The hemolysis of erythrocytes is a big obstacle to the development of new non-plasticizer polymer containers for erythrocyte preservation. To construct a long-term anti-hemolytic surface of a plasticizer-free polymer, we coaxially electrospin core-shell structured d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)/poly(ethylene oxide) nanofibers on the surface of a styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) elastomer that is covered with grafted poly(ethylene glycol) (PEG) chains. Our strategy is based on the fact that the grafted layers of PEG reduce mechanical damage to red blood cells (RBCs) while the TPGS released from the nanofibers on a blood-contacting surface can act as an antioxidant to protect RBCs from oxidative damage. We demonstrate that TPGS/PEO core-shell structured nanofibers have been well prepared on the surface of PEG modified SEBS; the controlled release of TPGS in distilled water is obtained and the release can last for almost 4 days at 4 °C; during RBC preservation, TPGS acts as the antioxidant to decrease the membrane oxidation and hemolysis of RBCs. Our work paves a new way for the development of non-plasticizer polymers for RBC preservation, which may be helpful for the fabrication of long-term anti-hemolytic biomaterials in vivo.

6.
Chem Commun (Camb) ; 51(20): 4200-3, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25469596

RESUMO

A novel hydrophilic PAMPS-PAAm brush pattern is fabricated to selectively capture blood cells from whole blood. PAMPS brushes provide antifouling surfaces to resist protein and cell adhesion while PAAm brushes effectively entrap targeted proteins for site-specific and cell-type dependent capture of blood cells.


Assuntos
Resinas Acrílicas/química , Eritrócitos/química , Polietilenos/química , Polímeros/química , Poliestirenos/química , Ácidos Sulfônicos/química , Interações Hidrofóbicas e Hidrofílicas
7.
Colloids Surf B Biointerfaces ; 125: 28-33, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25437061

RESUMO

There is an urgent need to develop blood-contacting biomaterials with long-term anti-hemolytic capability. To obtain such biomaterials, we coaxially electrospin [ascorbic acid (AA) and lecithin]/poly (ethylene oxide) (PEO) core-shell nanofibers onto the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) that has been grafted with poly (ethylene glycol) (PEG) chains. Our strategy is based on that the grafted layers of PEG render the surface hydrophilic to reduce the mechanical injure to red blood cells (RBCs) while the AA and lecithin released from nanofibers on blood-contacting surface can actively interact with RBCs to decrease the oxidative damage to RBCs. We demonstrate that (AA and lecithin)/PEO core-shell structured nanofibers have been fabricated on the PEG grafted surface. The binary release of AA and lecithin in the distilled water is in a controlled manner and lasts for almost 5 days; during RBCs preservation, AA acts as an antioxidant and lecithin as a lipid supplier to the membrane of erythrocytes, resulting in low mechanical fragility and hemolysis of RBCs, as well as high deformability of stored RBCs. Our work thus makes a new approach to fabricate blood-contacting biomaterials with the capability of long-term anti-hemolysis.


Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Materiais Biocompatíveis/química , Eritrócitos/efeitos dos fármacos , Lecitinas/química , Nanofibras/química , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Elastômeros/química , Elastômeros/farmacologia , Técnicas Eletroquímicas , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/citologia , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lecitinas/farmacologia , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Coelhos , Estirenos/química , Estirenos/farmacologia , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 6(23): 20868-79, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375822

RESUMO

Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.


Assuntos
Rastreamento de Células/métodos , Senescência Celular , Polietilenoglicóis/química , Estirenos/química , Adsorção , Elastômeros/química , Humanos , Polímeros/química , Propriedades de Superfície , Água/química
9.
Langmuir ; 30(45): 13549-55, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25365593

RESUMO

Despite the importance of adhesion between electrospun meshes and substrates, the knowledge on adhesion mechanism and the method to improve the adhesion remain limited. Here, we precisely design the model system based on electrospun poly(ethylene oxide) (PEO) meshes and the substrate of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS), and quantitatively measure the adhesion with a weight method. The surfaces of SEBS with different roughness are obtained by casting SEBS solution on the smooth and rough glass slides, respectively. Then, the surfaces of casted SEBS are respectively grafted with PEG oligomers and long PEG chains much larger than the entanglement molecular weight by surface-initiated atom transfer radical polymerization (SI-ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA). The detached surfaces of SEBS and electrospun fibers after adhesion measurements are analyzed by scanning electron microscopy (SEM). The adhesive force and adhesion energy are found to lie in the range from 68 to 220 mN and from 12 to 46 mJ/m(2), respectively, which are slightly affected by surface roughness of substrate but mainly determined by surface interactions. Just as the chemical cross-linking induces the strong adhesion, the chain entanglements on the interface lead to the higher adhesion than those generated by hydrophilic-hydrophobic interactions and hydrophilic interactions. The long grafted chains and the enhanced temperature facilitate the chain entanglements, resulting in the strong adhesive force. This work sheds new light on the adhesion mechanism at molecular level, which may be helpful to improve the adhesion between the electrospun fibers and substrates in an environmentally friendly manner.

10.
ACS Appl Mater Interfaces ; 6(12): 9808-14, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24830706

RESUMO

Hemolysis of red blood cells (RBCs) caused by implant devices in vivo and nonpolyvinyl chloride containers for RBC preservation in vitro has recently gained much attention. To develop blood-contacting biomaterials with long-term antihemolysis capability, we present a facile method to construct a hydrophilic, 3D hierarchical architecture on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene oxide) (PEO)/lecithin nano/microfibers. The strategy is based on electrospinning of PEO/lecithin fibers onto the surface of poly [poly(ethylene glycol) methyl ether methacrylate] [P(PEGMEMA)]-modified SEBS, which renders SEBS suitable for RBC storage in vitro. We demonstrate that the constructed 3D architecture is composed of hydrophilic micro- and nanofibers, which transforms to hydrogel networks immediately in blood; the controlled release of lecithin is achieved by gradual dissolution of PEO/lecithin hydrogels, and the interaction of lecithin with RBCs maintains the membrane flexibility and normal RBC shape. Thus, the blood-contacting surface reduces both mechanical and oxidative damage to RBC membranes, resulting in low hemolysis of preserved RBCs. This work not only paves new way to fabricate high hemocompatible biomaterials for RBC storage in vitro, but provides basic principles to design and develop antihemolysis biomaterials for implantation in vivo.


Assuntos
Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Lecitinas/farmacologia , Polietilenoglicóis/farmacologia , Materiais Biocompatíveis/química , Eritrócitos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lecitinas/química , Polietilenoglicóis/química , Cloreto de Polivinila/química
11.
J Mater Chem B ; 2(41): 7186-7191, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261797

RESUMO

The construction of biocompatible and antibacterial surfaces is becoming increasingly important. However, most of the existing techniques require multi-step procedures, stringent conditions and specific substrates. We present here a facile method to create a biocompatible and antibacterial surface on virtually any substrate under ambient conditions. The strategy is based on casting a highly adherent elastomer, styrene-b-(ethylene-co-butylene)-b-styrene, from a solvent mixture of xylene and decanol, in which decanol acts as both a polymer precipitator to induce phase separation and a liquid template to stabilize the superhydrophobic structure. The stable and durable superhydrophobic surface shows good biocompatibility and antibacterial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...