Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(6): 2779-2786, 2020 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608794

RESUMO

Anaerobic ammonium oxidation (ANAMMOX) is widely used for treatment of ammonium-rich wastewater because of its economic and environmental benefits. However, ANAMMOX bacteria are sensitive to environmental conditions, especially to heavy metals. The short-term and long-term effects of Ni(Ⅱ) on ANAMMOX were studied by batch and continuous flow experiments, respectively. Results showed that low concentrations of Ni(Ⅱ) had promoted nitrogen removal by ANAMMOX and high concentrations inhibited ANAMMOX performance during a short-term period. Compared with the specific anaerobic ammonium oxidation activity (SAA) without Ni(Ⅱ) addition, SAA with 1 mg·L-1 Ni(Ⅱ) addition increased by 11.14% and the SAA with 100 mg·L-1 Ni(Ⅱ) addition reduced by 49.55%. The IC50 of Ni(Ⅱ) for ANAMMOX was determined to be 83.86 mg·L-1. In contrast, long-term Ni(Ⅱ) addition significantly suppressed nitrogen removal of ANAMMOX, and the suppression threshold of Ni(Ⅱ) on ANAMMOX was 15 mg·L-1. The Monod model was applied to simulate the kinetics of ANAMMOX without Ni(Ⅱ) addition. The qmax0(TN/VSS) and KS0 values were 12.25 mg·(g·h)-1 and 405.36 mg·L-1, respectively. The modified Haldane model was suitable to describe the kinetics of ANAMMOX with 50 mg·L-1 Ni(Ⅱ) addition. The qmax(TN/VSS), KS, and Ki values were 6.78 mg·(g·h)-1, 313.2 mg·L-1, and 1.32, respectively. The inhibition of ANAMMOX by Ni(Ⅱ) is anticompetitive inhibition. In addition, the inhibition of Ni(Ⅱ) on ANAMMOX was mainly related to the content of intracellular Ni(Ⅱ). The IC50intracellular Ni(Ⅱ)(VSS) of intracellular Ni(Ⅱ) was 0.072 mg·g-1.

2.
Water Sci Technol ; 81(3): 622-629, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32385215

RESUMO

The effect of the magnetic field on denitrification process in immobilized bacteria particles was investigated in this study. The magnetic field could enhance the denitrification efficiency, especially for wastewater with low C/N ratios, and the average removal efficiencies of NO3 --N increased by 6.58%. High-throughput sequencing analysis revealed that the magnetic field had substantial impacts on the stability of microbial community structure and relative abundance in immobilized bacteria particles, which was beneficial for the stability of denitrifying bacteria. Through the research in this paper, we suggest that magnetic field can be used to improve the denitrification performance of immobilized bacteria particles in the wastewater treatment industry.


Assuntos
Reatores Biológicos , Desnitrificação , Bactérias , Campos Magnéticos , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA