Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(48): e2304290, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37525345

RESUMO

Developing stable silicon-based and lithium metal anodes still faces many challenges. Designing new highly practical silicon-based anodes with low-volume expansion and high electrical conductivity, and inhibiting lithium dendrite growth are avenues for developing silicon-based and lithium metal anodes, respectively. In this study, SiOx Cy microtubes are synthesized using a chemical vapor deposition method. As Li-ion battery anodes, the as-prepared SiOx Cy not only combines the advantages of nanomaterials and the practical properties of micromaterials, but also exhibits high initial Coulombic efficiency (80.3%), low volume fluctuations (20.4%), and high cyclability (98% capacity retention after 1000 cycles). Furthermore, SiOx Cy , as a lithium deposition substrate, can effectively promote the uniform deposition of metallic lithium. As a result, low nucleation overpotential (only 6.0 mV) and high Coulombic efficiency (≈98.9% after 650 cycles, 1.0 mA cm-2 and 1.0 mAh cm-2 ) are obtained on half cells, as well as small voltage hysteresis (only 9.5 mV, at 1.0 mA cm-2 ) on symmetric cells based on SiOx Cy . Full batteries based on both SiOx Cy and SiOx Cy @Li anodes demonstrate great practicality. This work provides a new perspective for the simultaneous development of practical SiOx Cy and dendrite-free lithium metal anodes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36780196

RESUMO

Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to the development of a stable Li metal anode. Here, an ultralight Mg3N2-modified carbon foam (CF-Mg3N2) was fabricated as a collector to address these issues. The calculated results show that the CF-Mg3N2 composite is relatively stable in terms of energy. Based on the synergistic effect of the three-dimensional skeleton and the lithiophilic nature of Mg3N2, homogeneous lithium deposition/stripping was realized around the foam carbon skeleton with an extremely low nucleation overpotential (∼9.3 mV) and high retention of Coulombic efficiency (99.3%) as well as long cyclability (700 cycles and 3000 h in half and symmetrical cells, respectively). Meanwhile, Mg3N2-CF@Li//LiFePO4 full cells also showed better rate capability and more stable cycling capability than CF@Li//LiFePO4 and Li//LiFePO4 cells, exhibiting extreme practicality. Accordingly, the design concept mentioned in this work provides a far-reaching influence on the development of a stable Li metal anode.

3.
Nano Lett ; 22(23): 9559-9565, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449467

RESUMO

The broad application of silicon-based materials is limited by large volume fluctuation, high preparation costs, and complicated preparation processes. Here, we synthesized SiOxCy microspheres on 3D copper foams by a simple chemical vapor deposition method using a low-cost silane coupling agent (KH560) as precursors. The SiOxCy microspheres are available with a large mass loading (>3 mg/cm2) on collectors and can be directly used as the electrode without any binders or extra conductive agents. As a result, the as-prepared SiOxCy shows a high reversible capacity of ∼1240 mAh g-1 and can be cycled more than 1900 times without decay. Ex situ characterizations show that the volume change of the microspheres is only 55% and the spherical morphology as well as the 3D structure remain intact after cycles. Full-cell electrochemical tests paired with LiFePO4 as cathodes show 87% capacity retention after 500 cycles, better than most reported results, thus showing the commercial potential of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...