Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 730506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621256

RESUMO

Crops assemble and rely on rhizosphere-associated microbiomes for plant nutrition, which is crucial to their productivity. Historically, excessive nitrogen fertilization did not result in continuously increasing yields but rather caused environmental issues. A comprehensive understanding should be developed regarding the ways in which crops shape rhizosphere-associated microbiomes under conditions of increased nitrogen fertilization. In this study, we applied 16S and 18S ribosomal RNA gene profiling to characterize bacterial and fungal communities in bulk and rhizosphere soil of rice subjected to three levels of nitrogen fertilization for 5 years. Soil biochemical properties were characterized, and carbon-, nitrogen-, and phosphorus-related soil enzyme activities were investigated, by assays. Increasing nitrogen fertilization led to a decreasing trend in the variation of microbial community structures and demonstrated a more definite influence on fungal rather than bacterial community compositions and functions. Changes in the level of nitrogen fertilization significantly affected chemical properties such as soil pH, nutrient content, and microbial biomass levels in both rhizosphere and bulk soil. Soil enzyme activity levels varied substantially across nitrogen fertilization intensities and correlated more with the fungal than with the bacterial community. Our results indicated that increased nitrogen input drives alterations in the structures and functions of microbial communities, properties of soil carbon, nitrogen, and phosphorus, as well as enzyme activities. These results provide novel insights into the associations among increased nitrogen input, changes in biochemical properties, and shifts in microbial communities in the rhizosphere of agriculturally intensive ecosystems.

2.
Ying Yong Sheng Tai Xue Bao ; 32(1): 154-162, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33477223

RESUMO

Rational application of organic fertilizers is an effective approach to improve soil fertility, crop yield, and zero growth of chemical fertilizer in agricultural production. The rice variety 'Shennong9816' was planted in Shenyang, Liaoning Province, under seven different treatments: zero nitrogen fertilizer (CK), low nitrogen, 150 kg·hm-2(LN), medium nitrogen, 240 kg·hm-2 (MN), high nitrogen, 330 kg·hm-2(HN), medium nitrogen with replacement of chemical N by 10% organic manure (OMN10), medium nitrogen with replacement of chemical N by 20% organic manure (OMN20), and medium nitrogen with replacement of chemical N by 30% organic manure (OMN30). The effects of different treatments on photosynthetic rate, nitrogen absorption, nitrogen use efficiency, and yield were examined and the optimal fertilization scheme was determined. The results showed that the photosynthetic rate, biomass and yield were increased with the increases of nitrogen application rate, while the nitrogen use efficiency was decreased significantly. Compared with the MN treatment, the photosynthetic rate of OMN10 and OMN20 in filling stage was increased by 22.9% and 9.9%, respectively. The yield of OMN20 was increased by 3.8% compared to that of MN. The nitrogen agronomic efficiency and physiological efficiency of OMN20 were significantly improved by 8.1% and 13.3%, respectively. Moreover, the nitrogen agronomic efficiency and physiological efficiency of OMN20 were improved by 27.2% and 37.2% compared with the HN treatment. Thus, we concluded that the organic fertilizer replacement treatment could conserve soil fertility, achieve high yield and high nitrogen use efficiency, while reduce chemical nitrogen fertilizer application. The OMN20 treatment was recommended as a fertilizer application model due to its superior performance among the seven treatments.


Assuntos
Fertilizantes , Oryza , Agricultura , Esterco , Nitrogênio/análise , Solo
3.
Chemosphere ; 76(11): 1491-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596135

RESUMO

The reductive dechlorination and biodegradation of 2,2(')4,5,5(')-pentachlorobiphenyl (PCB#101) was investigated in a laboratory-scale. Palladium coated iron (Pd/Fe) was used as a catalytic reductant for the chemical degradation of 2,2(')4,5,5(')-pentachlorobiphenyl, and an aerobic bacteria was used for biodegradation following the chemical reaction in this study. Dechlorination was affected by several factors such as Pd loading, initial soil pH and the amount of Pd/Fe used. The results showed that higher Pd loading, higher dosage of Pd/Fe and slightly acid condition were beneficial to the catalytic dechlorination of 2,2('),4,5,5(')-pentachlorobiphenyl. In laboratory batch experiments, 2,2(')4,5,5(')-pentachlorobiphenyl was reduced in the presence of Pd/Fe bimetal, which was not further degraded by aerobic bacteria. 2,2('),4-trichlorobiphenyl (PCB#17), a reduction product from 2,2(')4,5,5(')-pentachlorobiphenyl, was readily biodegraded in the presence of a aerobic bacterial strain. It is suggested that an integrated Pd/Fe catalytic reduction-aerobic biodegradation process may be a feasible option for treating PCB-contaminated soil.


Assuntos
Bactérias Aeróbias/metabolismo , Ferro/química , Paládio/química , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Aerobiose , Bactérias Aeróbias/isolamento & purificação , Biodegradação Ambiental/efeitos dos fármacos , Bifenilos Policlorados/química , Poluentes do Solo/química
4.
J Hazard Mater ; 162(1): 17-22, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18554786

RESUMO

A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.


Assuntos
Acidithiobacillus thiooxidans/química , Ácidos Acíclicos/química , Compostos Ferrosos/química , Acidithiobacillus thiooxidans/genética , Acidithiobacillus thiooxidans/isolamento & purificação , Cromatografia Líquida de Alta Pressão , DNA/química , Indicadores e Reagentes , Metais Pesados/análise , Microscopia Eletrônica de Varredura , Oxirredução , RNA Ribossômico 16S/química , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microbiologia do Solo
5.
J Hazard Mater ; 164(1): 126-32, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18823704

RESUMO

Pd/Fe bimetallic particles were synthesized by chemical deposition and used to dechlorinate 2,2',4,5,5'-pentachlorobiphenyl in soil. Batch experiments demonstrated that the Pd/Fe bimetallic particles could effectively dechlorinate 2,2',4,5,5'-pentachlorobiphenyl. Dechlorination was affected by several factors such as reaction time, Pd loading, the amount of Pd/Fe used, initial soil pH, and 2,2',4,5,5'-pentachlorobiphenyl concentration. The results showed that higher Pd loading, higher dosage of Pd/Fe, lower initial concentration of 2,2',4,5,5'-pentachlorobiphenyl and slightly acid condition were beneficial to the catalytic dechlorination of 2,2',4,5,5'-pentachlorobiphenyl. The degradation of 2,2',4,5,5'-pentachlorobiphenyl, catalyzed by Pd/Fe followed pseudo-first-order kinetics.


Assuntos
Ferro/química , Paládio/química , Bifenilos Policlorados/química , Poluentes do Solo/química , Solo , Catálise , Cinética , Purificação da Água/métodos
6.
Huan Jing Ke Xue ; 29(7): 1924-9, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18828378

RESUMO

Dechlorination of 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl in soil was studied by using Pd/Fe bimetallic catalytic reduction. 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl can be dechlorinated effectively by Pd/Fe bimetal. It was found that the removal efficiency of 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl in soil could reach 54% after 5 days of reaction with 1 g of Pd/Fe (Pd loading 0.05%) and at an initial pH of 5.6. Several important experiment parameters involved in this process were also studied, including Pd loading, initial soil pH, the reaction time, the amount of Pd/Fe used and 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl initial concentration. The results showed that higher Pd loading, higher dosage of Pd/Fe, lower initial concentration of 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl and weak acid condition were beneficial to the catalytic dechlorination of 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl. The degradation of 2, 2', 3, 4, 4', 5, 5'- heptachlorobiphenyl, catalyzed by Pd/Fe, followed first-order kinetics, and the rate constant was 0.014 2/h, the half life was 49 h. In addition, two possible mechanisms of the dechlorination reaction were proposed and discussed.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Paládio/química , Bifenilos Policlorados/química , Poluentes do Solo/química , Catálise , Halogenação , Cinética
7.
Chemosphere ; 71(8): 1593-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18082869

RESUMO

Pot experiment was conducted to evaluate the phytoremediation of pyrene-contaminated soil using alfalfa (Medicago sativa L.). Alfalfa biomasses, microbial viable counts, dehydrogenase activity, residual pyrene concentration and pyrene removal percentage were determined after 60 days of alfalfa growth. The results indicated that pyrene had an inhibitive effect on alfalfa growth, and higher pyrene concentration seriously affected alfalfa growth. In addition, the inhibitive effect on the root was more severe than that on the shoot. When pyrene concentration reached 492 mg kg(-1) in soil, the shoot and root biomasses were only 34% and 22% of those of alfalfa growing in non-spiked soil, respectively. The rhizospheric bacterial and fungi counts were 5.0-7.5 and 1.8-2.3 times higher than those in non-rhizosphere soil, respectively. The residual concentrations of pyrene in the rhizosphere soil were lower than those in the non-rhizosphere soil. After 60 days, 69-85% and 59-80% of spiked pyrene disappeared from the rhizosphere and non-rhizosphere soils, respectively. The removal percentage decreased with increasing pyrene concentration. However, the average removal of pyrene in the rhizosphere soil was 6% higher than that in the non-rhizosphere soil. Therefore, the presence of alfalfa roots was effective in promoting the phytoremediation of freshly added pyrene into the soil.


Assuntos
Medicago sativa/metabolismo , Pirenos/metabolismo , Biodegradação Ambiental , Biomassa , Medicago sativa/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo/análise , Microbiologia do Solo
8.
Environ Monit Assess ; 143(1-3): 257-65, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17885816

RESUMO

Spatial distribution and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in soils were studied in Shenfu Irrigation Area (SIA) located at northeast of China. SIA (1.3 x 10(4) ha) was an important agricultural farmland irrigated with oil-sewage since the 1960s. Soil profiles at 91 sites controlling all SIA were sampled. The results demonstrated that four- and five-ring PAHs accounted for 71.2% and 73.0% of the total PAHs in surface (0-20 cm) and subsurface (20-30 cm) soil, respectively. Phenanthrene (Phe), Fluoranthene (Fla), Pyrene (Pyr), Benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP) were identified as five dominant individual PAHs. Generally, there was a decreasing trend in concentrations of 16 EPA-PAHs from upper to lower reaches (by distance away from source) within 0.6-12.36 mg kg(-1) and 0.04-4.99 mg kg(-1) in surface and subsurface soil, respectively. The concentrations of 16 EPA-PAHs in the surface soil were threefold higher than those in the subsurface soil. A combination of grass, wood or coal combustion and petroleum combustion in surface soil and a combination of grass, wood or coal combustion and petroleum sources in subsurface soil might be the most significant contributors of 16 EPA-PAHs in SIA, indicating different pollution periods.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/análise , Agricultura/métodos , Benzo(a)pireno/análise , China , Fluorenos/análise , Geografia , Óleos/química , Fenantrenos/análise , Pirenos/análise , Esgotos/química , Movimentos da Água , Abastecimento de Água/análise
9.
Huan Jing Ke Xue ; 28(9): 2080-4, 2007 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-17990561

RESUMO

Pot experiment was used to investigate phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.). Results indicated that phenanthrene had inhibitive effect on alfalfa growth, and higher phenanthrene concentration seriously prevent alfalfa growth. When the concentration was 445.22 mg/kg, the shoot and root biomasses were only 57.31% and 31.20% of control respectively. Alfalfa significantly promoted phenanthrene degradation in the soil. After 60 days, 85.68%-91.40% and 75.25%-86.61% of spiked phenanthrene disappeared from the rhizosphere and non-rhizosphere soils respectively. And the average removal ratio of phenanthrene in rhizosphere soils was 6.33% higher than that in non-rhizoshpere soils. The residual concentration of phenanthrene in the rhizosphere was lower than that in the non-rhizosphere but the dehydrogenase activity was on the contrary. With phenanthrene concentration increase the removal ratio and dehydrogenase activity decreased. A positive correlation was observed between the soil dehydrogenase activity and the removal ratio of phenanthrene in both the rhizosphere and non-rhizosphere soils. Therefore the presence of alfalfa roots was effective in promoting the phytoremediation of phenanthrene.


Assuntos
Medicago sativa/metabolismo , Fenantrenos/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Medicago sativa/crescimento & desenvolvimento , Oxirredutases/metabolismo , Fenantrenos/análise , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...