Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35624668

RESUMO

Papaya fruit is widely grown in tropical regions because of its sweet taste, vibrant color, and the huge number of health benefits it provides. Melatonin is an essential hormone that governs many plants' biological processes. In the current study, the impact of melatonin on fruit ripening and deterioration in postharvest papaya fruit was explored. An optimum melatonin dose (400 µmol L-1, 2 h) was found to be effective in delaying fruit softening and reducing anthracnose incidence. Melatonin enhanced antioxidant activity and decreased fruit oxidative injury by lowering superoxide anion, hydrogen peroxide, and malondialdehyde content by enhancing the enzymatic and non-enzymatic antioxidants, and by improving the antioxidant capacity of papaya fruit. Melatonin increased catalase, ascorbate peroxidase, NADH oxidase, glutathione reductase, polyphenol oxidase, superoxide dismutase, and peroxidase activity, as well as induced total phenol, total flavonoid, and ascorbic acid accumulation. Melatonin also enhanced the activity of defense-related enzymes, such as chitinase, 4-coumaric acid-CoA-ligase, and phenylalanine ammonia lyase, while it repressed lipid metabolism. Additionally, melatonin inhibited the development of anthracnose in vitro and in vivo. These findings suggest that exogenous melatonin application improves papaya fruit quality by boosting antioxidant and defense-related mechanisms.

2.
Foods ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159414

RESUMO

Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 µmol·L-1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.

3.
Front Plant Sci ; 12: 678295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149778

RESUMO

Brassinosteroids act by delaying fruit ripening. The effects of different concentrations of 2,4-epibrassinolide (eBL) treatments on carambola fruit ripening were investigated. The results show that treatment of 2.8 mg L-1, eBL with 10 min effectively delays ripening and maintains the quality of carambola fruit. This is achieved by retarding color changes and firmness losses while maintaining high level of soluble protein content and vitamin C, and low organic acid content. eBL-delayed senescence may be due to the inhibition of respiration rate and enhanced antioxidant system. It is noteworthy that eBL treatment markedly reduces the content of fructose-6-phosphate (6-P-F) and enhances the activity of cytochrome oxidase (CCO), and the total activity of glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphate gluconate dehydrogenase (6-PGDH). eBL treatment induces the IAA and GA contents but reduces that of ABA. In general, senescence retardation and quality improvement by eBL treatment may be due to the enhanced antioxidant capacity and altered respiratory pathways.

4.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477620

RESUMO

Treatment with 1-methylcyclopropylene (1-MCP) is an effective technique to preserve fruits, but inappropriate treatment with 1-MCP causes a ripening disorder (rubbery texture) in papaya fruit. In this study, a combined metabolomic and transcriptomic analysis was conducted to reveal the possible mechanism of the ripening disorder caused by unsuitable 1-MCP in papaya. A total of 203 differential accumulated metabolites (DAMs) were identified in the metabolome analysis. Only 24 DAMs were identified in the control (CK) vs. the 1-MCP 2 h group, and they were primarily flavonoids. Ninety and 89 DAMs were identified in the CK vs. 1-MCP 16 h and 1-MCP 2 h vs. 1-MCP 16 h groups, respectively, indicating that long-term 1-MCP treatment severely altered the metabolites during fruit ripening. 1-MCP 16 h treatment severely reduced the number of metabolites, which primarily consisted of flavonoids, lipids, phenolic acids, alkaloids, and organic acids. An integrated analysis of RNA-Seq and metabolomics showed that various energy metabolites for the tricarboxylic acid cycle were reduced by long-term treatment with 1-MCP, and the glycolic acid cycle was the most significantly affected, as well as the phenylpropane pathway. These results provide valuable information for fruit quality control and new insight into the ripening disorder caused by unsuitable treatment with 1-MCP in papaya.


Assuntos
Carica/efeitos dos fármacos , Ciclopropanos/farmacologia , Transcriptoma/genética , Carica/genética , Carica/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Humanos , Metabolômica/tendências , Proteínas de Plantas/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...