Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(5): 3489-3499, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38661561

RESUMO

Electronic skins have received increasing attention due to their great application potential in wearable electronics. Meanwhile, tremendous efforts are still needed for the fabrication of multifunctional composite hydrogels with complex structures for electronic skins via simple methods. In this work, a novel three-dimensional (3D) printing composite hydrogel with stretchability, conductivity, and strain-sensing ability is produced using a one-step photocuring method to achieve a dual-signal response of the electronic skin. The composite hydrogel exhibits a triple-network structure composed of silk microfibers (SMF), regenerated silk fibroin (RSF), and polyacrylamide (PAM). The establishment of triple networks is based on the electrostatic interaction between SMF and RSF, as well as the chemically cross-linked RSF and PAM. Thanks to its specific structure and components, the composite hydrogel possesses enhanced mechanical properties (elastic modulus of 140 kPa, compressive stress of 21 MPa, and compression modulus of 600 kPa) and 3D printability while retaining stretchability and flexibility. The interaction between negatively charged SMF and cations in phosphate-buffered saline endows the composite hydrogel with good conductivity and strain-sensing ability after immersion in a low-concentration (10 mM) salt solution. Moreover, the 3D printing composite hydrogel scaffold successfully realizes real-time monitoring. Therefore, the proposed hydrogel-based ionic sensor is promising for skin tissue engineering, real-time monitoring, soft robotics, and human-machine interfaces.


Assuntos
Resinas Acrílicas , Condutividade Elétrica , Fibroínas , Hidrogéis , Impressão Tridimensional , Dispositivos Eletrônicos Vestíveis , Fibroínas/química , Resinas Acrílicas/química , Hidrogéis/química , Humanos , Biônica
2.
Front Cell Dev Biol ; 11: 993741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077418

RESUMO

Presently, various tissue engineering methods using adult stem cells and biomaterials are being confirmed to regenerate vessels, cardiac muscle, bladder, and intestines. However, there are few studies about the repair of the lower esophageal sphincter (LES) may help alleviate the symptoms of gastroesophageal reflux disease (GERD). This study aims to determine whether Adipose-Derived Stem Cells (ADSCs) combined with regenerated silk fibroin (RSF) solution could regenerate the LES. In vitro, the ADSCs were isolated, identified, and then cultured with an established smooth muscular induction system. In vivo, in the experimental groups, CM-Dil labeled ADSCs or induced ADSCs mixed with RSF solution were injected into the LES of rats after the development of the animal model of GERD respectively. The results showed that ADSCs could be induced into smooth muscular-like cells with the expression of h-caldesmon, calponin, α-smooth muscle actin, and a smooth muscle-myosin heavy chain in vitro. In vivo, the thickness of LES in the experiment rats was much thicker than those in the controlled groups. This result indicated that ADSCs mixed with RSF solution might contribute to the regeneration of the LES, thus reducing the occurrence of GERD.

3.
Regen Biomater ; 10: rbad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726609

RESUMO

Due to the innate extracellular matrix mimicking features, fibrous materials exhibited great application potential in biomedicine. In developing excellent fibrous biomaterial, it is essential to reveal the corresponding inherent fiber features' effects on cell behaviors. Due to the inevitable 'interference' cell adhesions to the background or between adjacent fibers, it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat. A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein. In this unique material platform, the 'interference' cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background. The 'interference' cell adhesions between adjacent fibers could also be excluded from the sparsely arranged (SA) fiber patterns. The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired 'interference' cell adhesions in a controllable way. On the SA fiber patterns, small diameter fiber (SA-D1, D1 means 1 µm in diameter) may seriously restrict cell proliferation and osteogenesis when compared to the middle (SA-D8) and large (SA-D56) ones and SA-D8 shows the optimal osteogenesis enhancement effect. At the same time, the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged (DA) fiber patterns with small diameter fiber (DA-D1) when compared to the middle (DA-D8) and large (DA-D56) ones. The 'interference' cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters. Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively, thus providing valuable reference and guidance for developing effective fibrous biomaterials.

4.
Mater Today Bio ; 16: 100381, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36017107

RESUMO

Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.

5.
ACS Appl Mater Interfaces ; 14(1): 123-137, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935351

RESUMO

Silk fibroin (SF)-based electroactive biomaterials with favorable electroconductive property and transparency have great potential applications for cell culture and tissue engineering. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an excellent candidate as a conductive component, which has been widely used in the field of bioelectronics; however, it is hard to be directly coated onto the surface of regenerated SF (RSF) materials with good stability under a cell culture environment. In this study, a one-step facile PEDOT:PSS modification approach for RSF films based on a suitable post-treatment process of RSF was developed. PEDOT:PSS was successfully embedded and fixed into the shallow surface of an RSF film, forming a tightly conjunct conductive layer on the film surface based on the conformation transition of RSF during the post-treatment process. The conductive layer demonstrated a PSS-rich surface and a PEDOT-rich bulk structure and showed excellent stability under a cell culture environment. More specifically, the robust RSF/PEDOT:PSS film achieved in the post-treatment formula with 70% ethanol proportion possessed best comprehensive properties such as a sheet resistance of 3.833 × 103 Ω/square, a conductivity of 1.003 S/cm, and transmittance over 80% at maximum in the visible range. This kind of electroactive biomaterial also showed good electrochemical stability and degradable properties. Moreover, pheochromocytoma-derived cell line (PC12) cells were cultured on the RSF/PEDOT:PSS film, and an effective electrical stimulation cell response was demonstrated. The facile preparation strategy and the good electroconductive property and transparency make this RSF/PEDOT:PSS film an ideal candidate for neuronal tissue engineering and further for biomedical applications.


Assuntos
Meios de Cultura/química , Fibroínas/química , Membranas Artificiais , Poliestirenos/química , Tiofenos/química , Animais , Bombyx/química , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Técnicas Eletroquímicas , Fenômenos Ópticos , Células PC12 , Ratos
6.
Adv Sci (Weinh) ; 9(5): e2104001, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34936228

RESUMO

Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.


Assuntos
Durapatita , Impressão Tridimensional , Força Compressiva , Coroas , Resistência à Flexão
7.
Regen Biomater ; 8(6): rbab066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34868635

RESUMO

Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo, which is associated with the pathogenesis and treatment of orthopedic diseases. Therefore, it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors. Herein, a fluid shear stress (FSS) plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell (BMSC) was chosen as a model cell. The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated. Single FSS stimulation and static culture conditions were also examined. Results illustrated that suitable single FSS stimulation (about 0.06 dyn/cm2) could significantly enhance cell proliferation and osteogenesis simultaneously when compared to the static control, while greater FSS mitigated or even restricted these enhancing effects. Interestingly, ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing. As for the osteogenesis under compound stimulation, it was relatively restricted under lower ultrasound intensity (about 0.075 W/cm2), while promoted when the intensity became higher (about 1.75 W/cm2). This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies. Moreover, these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.

8.
Mater Horiz ; 8(12): 3281-3294, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34661227

RESUMO

Bio-memristors constitute candidates for the next generation of non-volatile storage and bionic synapses due to their biocompatibility, environmental benignity, sustainability, flexibility, degradability, and impressive memristive performance. Silk fibroin (SF), a natural and abundant biomaterial with excellent mechanical, optical, electrical, and structure-adjustable properties as well as being easy to process, has been utilized and shown to have potential in the construction of bio-memristors. Here, we first summarize the fundamental mechanisms of bio-memristors based on SF. Then, the latest achievements and developments of pristine and composited SF-based memristors are highlighted, followed by the integration of memristive devices. Finally, the challenges and insights associated with SF-based bio-memristors are presented. Advances in SF-based bio-memristors will open new avenues in the design and integration of high-performance bio-integrated systems and facilitate their application in logic operations, complex circuits, and neural networks.


Assuntos
Fibroínas , Materiais Biocompatíveis , Redes Neurais de Computação
9.
ACS Biomater Sci Eng ; 7(7): 3459-3468, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34165975

RESUMO

Biomemristors have attracted significant attention because of their potential applications in logic operations, nonvolatile memory, and synaptic emulators, thus leading to the urgent need to improve memristive performance. In this work, a silk fibroin (SF)-based memristor, integrated with both low power and low operating current simultaneously, has been reported. Doping the SF with Ag and an ethanol-based post-treatment promote microcrystal formation in the bulk of the SF. This induces carrier transport along fixed, short paths and results in a low set voltage, low operating current, and high memristive stability. Such performances can greatly reduce power consumption and heat generation, beneficial for the accuracy and durability of memristor devices. The memristive mechanism of SF-based memristors with different Ag contents is the space-charge-limited conduction (SCLC) mechanism. In addition, the nonlinear transmission property of SF-based memristors suggests useful applications in bioelectronics.


Assuntos
Fibroínas
10.
J Mater Chem B ; 9(27): 5514-5527, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152355

RESUMO

Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.


Assuntos
Fibroínas/química , Seda/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bombyx , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Tamanho da Partícula , Porosidade , Propriedades de Superfície
11.
ACS Biomater Sci Eng ; 7(3): 1202-1215, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33599501

RESUMO

Bioelectronics based on biomaterial substrates are advancing toward biomedical applications. As excellent conductors, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been widely developed in this field. However, it is still a big challenge to obtain a functional layer with a good electroconductive property, transparency, and strong adhesion on the biosubstrate. In this work, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) was chemically polymerized and deposited on the surface of a regenerated silk fibroin (RSF) film in an aqueous system. Sodium dodecyl sulfate (SDS) was used as the surfactant to form micelles which are beneficial to the polymer structure. To overcome the trade-off between transparency and the electroconductive property of the PEDOT-OH coating, a composite oxidant recipe of FeCl3 and ammonium persulfate (APS) was developed. Through electrostatic interaction of oppositely charged doping ions, a well-organized conductive nanoscale coating formed and a transparent conductive RSF/PEDOT-OH film was produced, which can hardly be achieved in a traditional single oxidant system. The produced film had a sheet resistance (Rs) of 5.12 × 104 Ω/square corresponding to a conductivity of 8.9 × 10-2 S/cm and a maximum transmittance above 73% in the visible range. In addition, strong adhesion between PEDOT-OH and RSF and favorable electrochemical stability of the film were demonstrated. Desirable transparency of the film allowed real-time observation of live cells. Furthermore, the PEDOT-OH layer provided an improved environment for adhesion and differentiation of PC12 cells compared to the RSF surface alone. Finally, the feasibility of using the RSF/PEDOT-OH film to electrically stimulate PC12 cells was demonstrated.


Assuntos
Polímeros , Seda , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Condutividade Elétrica , Ratos
12.
Colloids Surf B Biointerfaces ; 197: 111444, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166933

RESUMO

In this work, we described a green and simple approach for fabricating regenerated silk fibroin (RSF)/reduced graphene oxide (RGO) fibrous mats by reducing GO in the RSF/GO mats through hydrothermal treatment. As a comparison, RSF mat incorporated with graphene (Gr) was fabricated by solution mixing method. Results showed that the reduction of GO in the mats did take place during hydrothermal treatment. An increase in the crystallinity of the mats was induced by hydrothermal treatment. The maximum Young's modulus of RSF/RGO mats reached (122.7 ± 3.1) MPa, which was at least 9-fold higher than RSF mats. As the mass ratio of RGO/RSF was 1.5/100, the average sheet resistance of RSF/RGO mats reached (1.2 ± 0.1)×108 Ω/sq, which was better and more stable than that of RSF/Gr mats. Furthermore, cellular tests and antibacterial tests demonstrated that RSF/RGO mats possessed better biocompatibility and antibacterial property in comparison with RSF mats incorporated with GO or Gr. Thus, the RSF/RGO mats could be a good candidate for tissue engineering applications.


Assuntos
Bombyx , Fibroínas , Grafite , Animais , Seda , Engenharia Tecidual
13.
Cellulose (Lond) ; 28(1): 241-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33132545

RESUMO

A novel biomaterial ink consisting of regenerated silk fibroin (SF) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (OBC) nanofibrils was developed for 3D printing lung tissue scaffold. Silk fibroin backbones were cross-linked using horseradish peroxide/H2O2 to form printed hydrogel scaffolds. OBC with a concentration of 7wt% increased the viscosity of inks during the printing process and further improved the shape fidelity of the scaffolds. Rheological measurements and image analyses were performed to evaluate inks printability and print shape fidelity. Three-dimensional construct with ten layers could be printed with ink of 1SF-2OBC (SF/OBC = 1/2, w/w). The composite hydrogel of 1SF-1OBC (SF/OBC = 1/1, w/w) printed at 25 °C exhibited a significantly improved compressive strength of 267 ± 13 kPa and a compressive stiffness of 325 ± 14 kPa at 30% strain, respectively. The optimized printing parameters for 1SF-1OBC were 0.3 bar of printing pressure, 45 mm/s of printing speed and 410 µm of nozzle diameter. Furthermore, OBC nanofibrils could be induced to align along the print lines over 60% degree of orientation, which were analyzed by SEM and X-ray diffraction. The orientation of OBC nanofibrils along print lines provided physical cues for guiding the orientation of lung epithelial stem cells, which maintained the ability to proliferate and kept epithelial phenotype after 7 days' culture. The 3D printed SF-OBC scaffolds are promising for applications in lung tissue engineering.

14.
ACS Biomater Sci Eng ; 6(5): 3154-3161, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463277

RESUMO

Antibacterial scaffolds are highly desirable for the repair and reconstruction of injured soft tissues. However, the direct fabrication of scaffolds with excellent biocompatibility, flexibility, and antibacterial capacity remains a challenge, especially those based on biomaterials. In this study, we report the biomaterial-based antibacterial scaffolds based on regenerated silk fibroin, 2-hydroxypropyltrimethyl ammonium chloride chitosan, and bladder acellular matrix graft by blend and coaxial electrospinning. This approach eliminated the use of organic solvents and inorganic nanoparticles, ensuring greater clinical safety, mimicking physiological extracellular matrix structures, and the required softness for a suture material. Thus, the scaffold obtained in this study exhibited excellent biocompatibility, the required mechanical characteristics, and excellent antibacterial capacity. The rate of bacterial elimination of Staphylococcus aureus and Escherichia coli reached up to 99.5 and 98.3%, respectively. The scaffold design favored cell growth and proliferation and resulted in the significant promotion of repair and reconstruction of the urethra, indicating that it can be an ideal antibacterial suture material for soft tissue restoration.


Assuntos
Materiais Biocompatíveis , Fibroínas , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Suturas , Alicerces Teciduais
15.
Artigo em Inglês | MEDLINE | ID: mdl-31448271

RESUMO

Neural progenitor cell (NPC) transplantation is a promising technique for central nervous system (CNS) reconstruction and regeneration. Biomaterial scaffolds, frameworks, and platforms can support NPC proliferation and differentiation in vitro as well as serve as a temporary extracellular matrix after transplantation. However, further applications of biomaterials require improved biological attributes. Silk fibroin (SF), which is produced by Bombyx mori, is a widely used and studied protein polymer for biomaterial application. Here, we prepared aligned and random eletrospun regenerated SF (RSF) scaffolds, and evaluated their impact on the growth of NPCs. First, we isolated NPCs and then cultured them on either laminin-coated RSF mats or conventional laminin-coated coverslips for cell assays. We found that aligned and random RSF led to increases in NPC proliferation of 143.8 ± 13.3% and 156.3 ± 14.7%, respectively, compared to controls. Next, we investigated neuron differentiation and found that the aligned and the random RSF led to increases in increase in neuron differentiation of about 93.2 ± 6.4%, and 3167.1 ± 4.8%, respectively, compared to controls. Furthermore, we measured the survival of NPCs and found that RSF promoted NPC survival, and found there was no difference among those three groups. Finally, signaling pathways in cells cultured on RSF mats were studied for their contributions in neural cell differentiation. Our results indicate that RSF mats provide a functional microenvironment and represent a useful scaffold for the development of new strategies in neural engineering research.

16.
Carbohydr Polym ; 221: 146-156, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227153

RESUMO

One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in the bioink. Large pores and micropores in the scaffolds were achieved by designing printing pattern and lyophilization after extrusion. The pores ranging from 10 to 20 µm inside the printed filaments served as host for cellular infiltration, while the pores with a diameter from 300 to 600 µm circled by printed filaments ensured sufficient nutrient supply. These 3D-printed composite scaffolds with remarkable mechanical properties and hierarchical pore structures are promising for further tissue engineering applications.


Assuntos
Celulose/química , Fibroínas/química , Hidrogéis/química , Nanofibras/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Bactérias/química , Linhagem Celular , Módulo de Elasticidade , Camundongos Endogâmicos ICR , Porosidade , Resistência à Tração , Engenharia Tecidual/métodos
17.
Nanomicro Lett ; 11(1): 75, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34138020

RESUMO

Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds. Despite great progress in the preparation of a variety of colored silks, fluorescent silk with enhanced mechanical properties has yet to be explored. In this study, we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots (CNDs). The CNDs were incorporated into silk fibroin, hindering the conformation transformation, confining crystallization, and inducing orientation of mesophase. The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9 ± 82.7 MPa and breaking elongation of 19.2 ± 4.3%, improvements of 55.1% and 53.6%, respectively, in comparison with regular silk. The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells, suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.

18.
ACS Appl Bio Mater ; 2(3): 1158-1167, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021364

RESUMO

Rapid vascularization is very important in tissue engineering. Bladder acellular matrix (BAM) with inherent bioactive factors, a natural extracellular matrix (ECM) derived biomaterial, has been widely used as a scaffold to facilitate the repair and reconstruction of urinary tissues. However, the application of the traditional BAM scaffold has been limited due to the dense structure. To investigate the angiogenic potential of BAM, BAM hydrogels with tailored porous structures were prepared in this study by tuning BAM concentrations (4, 6, and 8 mg/mL). The 6 mg/mL BAM hydrogel was loaded with porcine iliac endothelial cells (PIECs), and their angiogenic potential was analyzed in vitro and in vivo. The mechanical strength and gelation speed of the BAM hydrogels increased, while their pore size decreased as concentration increased. Commercially available collagen hydrogel (2.5 mg/mL) showed weaker mechanical properties than BAM hydrogels but similar gelation speed and pore size as 6 mg/mL BAM hydrogel. To ensure a similar three-dimensional microenvironment for the PIECs, 6 mg/mL BAM and collagen hydrogels were selected for the in vitro and in vivo experiments. A significantly higher density of viable, fusiform PIECs of average length ∼50 µm was observed in the BAM hydrogel, while those inside the collagen hydrogel were spherical and ∼30 µm long. In addition, the PIECs/BAM hydrogel resulted in significantly higher revascularization compared with the PIECs/collagen and unloaded BAM hydrogels. The higher angiogenic potential of the PIECs/BAM hydrogel is due to the growth factors that promote PIEC proliferation and therefore vascularization.

19.
Mater Sci Eng C Mater Biol Appl ; 94: 179-189, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423700

RESUMO

Electrospun scaffold with three-dimensional (3D) geometry and appropriate pore structure is an important challenge to mimic natural tissues such as skin, cartilage, etc. In this work, 3D silk fibroin (SF) electrospun scaffolds with gradient pore size were prepared by combining multi-step electrospinning with low temperature (LTE) collecting. The LTE electrospun scaffolds achieved 3D macro-structure with large pore size. The effects of relative humidity (RH), collecting temperature on the morphology of the scaffolds were investigated by scanning electron microscopy and computed tomography. The pore size of the scaffolds was tailored by adjusting SF concentration, electric field, flow rate, needle gauge and collector temperature during electrospinning at 50% RH. L929 cell infiltration results of the scaffolds showed that conventional electrospun scaffolds with small pore size (average diameter 5.9 ±â€¯1.4 µm) restrained cell proliferation and infiltration. On the contrary, LTE electrospun scaffolds with medium pore size (average diameter 11.6 ±â€¯1.4 µm) improved cell proliferation obviously. Large pore size scaffolds (average diameter 37.2 ±â€¯12.9 µm) was beneficial to cell infiltration depth in the thickness direction of the scaffolds. The scaffolds, which were integrated with layers of small, medium and large pores, are promising in the repair of tissue with gradient pore structures.


Assuntos
Fibroblastos/citologia , Seda/farmacologia , Alicerces Teciduais/química , Animais , Bombyx , Proliferação de Células , Forma Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Umidade , Camundongos , Células NIH 3T3 , Porosidade , Seda/química
20.
ACS Nano ; 12(12): 11860-11870, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30407791

RESUMO

In this study, nascent silk nanoribbons (SNRs) with an average thickness of 0.4 nm were extracted from natural silkworm silk by partially dissolving degummed silk (DS) in sodium hydroxide (NaOH)/urea solution at -12 °C. In this gentle treatment, the solvent could not destroy the nanofibrillar structure completely, but the chosen conditions would influence the dimensions of resulting SNRs. Molecular dynamics simulations of silk models indicated that the potential of mean force required to break hydrogen bonds between silk fibroin chains was 40% larger than that of van der Waals interactions between ß-sheet layers, allowing the exfoliating treatment. It was found that the resulting SNRs contained a single ß-sheet layer and amorphous silk fibroin molecules, which could be considered as the basic building block of DS consisting of hierarchical structures. The demonstrated technique for extracting ultrathin SNRs having the height of a single ß-sheet layer may provide a useful pathway for creating stronger and tougher silk-based materials and/or adding functionality and durability in materials for various applications. The hierarchical structure model based on SNRs may afford more insight into the structure and property relationship of fabricating silk-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...