Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 913776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531717

RESUMO

Background: Although advanced surgical and interventional treatments are available for advanced aortic valve calcification (AVC) with severe clinical symptoms, early diagnosis, and intervention is critical in order to reduce calcification progression and improve patient prognosis. The aim of this study was to develop therapeutic targets for improving outcomes for patients with AVC. Materials and methods: We used the public expression profiles of individuals with AVC (GSE12644 and GSE51472) to identify potential diagnostic markers. First, the R software was used to identify differentially expressed genes (DEGs) and perform functional enrichment analysis. Next, we combined bioinformatics techniques with machine learning methodologies such as random forest algorithms and support vector machines to screen for and identify diagnostic markers of AVC. Subsequently, artificial neural networks were employed to filter and model the diagnostic characteristics for AVC incidence. The diagnostic values were determined using the receiver operating characteristic (ROC) curves. Furthermore, CIBERSORT immune infiltration analysis was used to determine the expression of different immune cells in the AVC. Finally, the CMap database was used to predict candidate small compounds as prospective AVC therapeutics. Results: A total of 78 strong DEGs were identified. The leukocyte migration and pid integrin 1 pathways were highly enriched for AVC-specific DEGs. CXCL16, GPM6A, BEX2, S100A9, and SCARA5 genes were all regarded diagnostic markers for AVC. The model was effectively constructed using a molecular diagnostic score system with significant diagnostic value (AUC = 0.987) and verified using the independent dataset GSE83453 (AUC = 0.986). Immune cell infiltration research revealed that B cell naive, B cell memory, plasma cells, NK cell activated, monocytes, and macrophage M0 may be involved in the development of AVC. Additionally, all diagnostic characteristics may have varying degrees of correlation with immune cells. The most promising small molecule medicines for reversing AVC gene expression are Doxazosin and Terfenadine. Conclusion: It was identified that CXCL16, GPM6A, BEX2, S100A9, and SCARA5 are potentially beneficial for diagnosing and treating AVC. A diagnostic model was constructed based on a molecular prognostic score system using machine learning. The aforementioned immune cell infiltration may have a significant influence on the development and incidence of AVC.

2.
Appl Opt ; 59(4): 1187-1192, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225259

RESUMO

We investigate the influence of third-order dispersion of dispersive elements, three-photon absorption and free-carrier effects on mid-infrared time magnification via four-wave mixing (FWM) in ${{\rm Si}_{0.8}}{{\rm Ge}_{0.2}}$Si0.8Ge0.2 waveguides. It is found that the magnified waveform is seriously distorted by these factors, and conversion efficiency is decreased, mainly because of nonlinear absorption. A time lens based on FWM in ${{\rm Si}_{0.8}}{{\rm Ge}_{0.2}}$Si0.8Ge0.2 waveguides is proposed for time magnification of mid-infrared ultrashort pulses, in which the low-distortion, high-magnification in the time domain could be obtained by optimizing system parameters. These results make it possible to analyze the transient dynamic process through oscilloscopes and detectors with gigahertz bandwidth and have important applications in ultrafast process analysis, optical pulse sampling, and optical communications.

3.
Appl Opt ; 59(7): 2101-2107, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225734

RESUMO

We numerically demonstrate orthogonally polarized dual-comb generation in a single microcavity with normal dispersion assisted by the cross-phase modulation (XPM) effect. It is found that the XPM effect facilitates the emission of a secondary polarized comb with different temporal properties in a wide existence range covering the blue- to red-detuned regime and thus releases the requirements for delicate control on the detuned region of pump frequency. Also, the energy transfer between two polarization components together with the normal-dispersion property contributes to a more balanced intensity difference and significantly increased conversion efficiency from the pump light into the comb operation. This work could provide a route to a low-cost and compact mid-infrared dual-comb system with a lower power requirement as well as an effective approach to higher comb teeth power with improved efficiency for practical applications.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(1): 142-148, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118891

RESUMO

We derive the analytical formula of the energy weight of each orbital angular momentum (OAM) mode of twisted Gaussian Schell-model (TGSM) beams propagating in weak turbulent atmosphere. The evolution of its OAM spectrum is studied by numerical calculation. Our results show that the OAM spectrum of a TGSM beam changes with the beam propagating in turbulent atmosphere, which is completely different from that of the TGSM beam propagating in free space. Furthermore, influences of the source parameters and the turbulence parameters on the OAM spectrum of a TGSM beam in turbulent atmosphere are analyzed. It is found that the source parameters and turbulence parameters, such as twist factor, coherence length, beam waist size, and structure constant, have a significant influence on the OAM spectrum, but the value of the wavelength and inner scale have little influence. Increasing the beam waist size or decreasing the coherence length would lead to the OAM spectrum broadened in the source plane, but would be robust for the OAM modes of the TGSM beam in the turbulent atmosphere. It is clear that the bigger the value of the twist factor, the more asymmetric the OAM mode of the TGSM beam is, and the better mode distribution can be maintained when it propagates in turbulent atmosphere. Our results have potential applications in reducing the error rate of free-space optical communication and detecting the atmospheric parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...