Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 5: 0100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791249

RESUMO

Accurate counting of maize tassels is essential for monitoring crop growth and estimating crop yield. Recently, deep-learning-based object detection methods have been used for this purpose, where plant counts are estimated from the number of bounding boxes detected. However, these methods suffer from 2 issues: (a) The scales of maize tassels vary because of image capture from varying distances and crop growth stage; and (b) tassel areas tend to be affected by occlusions or complex backgrounds, making the detection inefficient. In this paper, we propose a multiscale lite attention enhancement network (MLAENet) that uses only point-level annotations (i.e., objects labeled with points) to count maize tassels in the wild. Specifically, the proposed method includes a new multicolumn lite feature extraction module that generates a scale-dependent density map by exploiting multiple dilated convolutions with different rates, capturing rich contextual information at different scales more effectively. In addition, a multifeature enhancement module that integrates an attention strategy is proposed to enable the model to distinguish between tassel areas and their complex backgrounds. Finally, a new up-sampling module, UP-Block, is designed to improve the quality of the estimated density map by automatically suppressing the gridding effect during the up-sampling process. Extensive experiments on 2 publicly available tassel-counting datasets, maize tassels counting and maize tassels counting from unmanned aerial vehicle, demonstrate that the proposed MLAENet achieves marked advantages in counting accuracy and inference speed compared to state-of-the-art methods. The model is publicly available at https://github.com/ShiratsuyuShigure/MLAENet-pytorch/tree/main.

2.
Plant Phenomics ; 5: 0038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011278

RESUMO

Plant disease recognition is of vital importance to monitor plant development and predicting crop production. However, due to data degradation caused by different conditions of image acquisition, e.g., laboratory vs. field environment, machine learning-based recognition models generated within a specific dataset (source domain) tend to lose their validity when generalized to a novel dataset (target domain). To this end, domain adaptation methods can be leveraged for the recognition by learning invariant representations across domains. In this paper, we aim at addressing the issues of domain shift existing in plant disease recognition and propose a novel unsupervised domain adaptation method via uncertainty regularization, namely, Multi-Representation Subdomain Adaptation Network with Uncertainty Regularization for Cross-Species Plant Disease Classification (MSUN). Our simple but effective MSUN makes a breakthrough in plant disease recognition in the wild by using a large amount of unlabeled data and via nonadversarial training. Specifically, MSUN comprises multirepresentation, subdomain adaptation modules and auxiliary uncertainty regularization. The multirepresentation module enables MSUN to learn the overall structure of features and also focus on capturing more details by using the multiple representations of the source domain. This effectively alleviates the problem of large interdomain discrepancy. Subdomain adaptation is used to capture discriminative properties by addressing the issue of higher interclass similarity and lower intraclass variation. Finally, the auxiliary uncertainty regularization effectively suppresses the uncertainty problem due to domain transfer. MSUN was experimentally validated to achieve optimal results on the PlantDoc, Plant-Pathology, Corn-Leaf-Diseases, and Tomato-Leaf-Diseases datasets, with accuracies of 56.06%, 72.31%, 96.78%, and 50.58%, respectively, surpassing other state-of-the-art domain adaptation techniques considerably.

3.
Front Plant Sci ; 13: 927368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845704

RESUMO

Weed control has received great attention due to its significant influence on crop yield and food production. Accurate mapping of crop and weed is a prerequisite for the development of an automatic weed management system. In this paper, we propose a weed and crop segmentation method, SemiWeedNet, to accurately identify the weed with varying size in complex environment, where semi-supervised learning is employed to reduce the requirement of a large amount of labelled data. SemiWeedNet takes the labelled and unlabelled images into account when generating a unified semi-supervised architecture based on semantic segmentation model. A multiscale enhancement module is created by integrating the encoded feature with the selective kernel attention, to highlight the significant features of the weed and crop while alleviating the influence of complex background. To address the problem caused by the similarity and overlapping between crop and weed, an online hard example mining (OHEM) is introduced to refine the labelled data training. This forces the model to focus more on pixels that are not easily distinguished, and thus effectively improve the image segmentation. To further exploit the meaningful information of unlabelled data, consistency regularisation is introduced by maintaining the context consistency during training, making the representations robust to the varying environment. Comparative experiments are conducted on a publicly available dataset. The results show the SemiWeedNet outperforms the state-of-the-art methods, and its components have promising potential in improving segmentation.

4.
Front Plant Sci ; 13: 844522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665165

RESUMO

Deep learning-based methods have recently provided a means to rapidly and effectively extract various plant traits due to their powerful ability to depict a plant image across a variety of species and growth conditions. In this study, we focus on dealing with two fundamental tasks in plant phenotyping, i.e., plant segmentation and leaf counting, and propose a two-steam deep learning framework for segmenting plants and counting leaves with various size and shape from two-dimensional plant images. In the first stream, a multi-scale segmentation model using spatial pyramid is developed to extract leaves with different size and shape, where the fine-grained details of leaves are captured using deep feature extractor. In the second stream, a regression counting model is proposed to estimate the number of leaves without any pre-detection, where an auxiliary binary mask from segmentation stream is introduced to enhance the counting performance by effectively alleviating the influence of complex background. Extensive pot experiments are conducted CVPPP 2017 Leaf Counting Challenge dataset, which contains images of Arabidopsis and tobacco plants. The experimental results demonstrate that the proposed framework achieves a promising performance both in plant segmentation and leaf counting, providing a reference for the automatic analysis of plant phenotypes.

5.
IEEE Trans Neural Netw Learn Syst ; 33(1): 130-144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33180734

RESUMO

Recently, there are many works on discriminant analysis, which promote the robustness of models against outliers by using L1- or L2,1-norm as the distance metric. However, both of their robustness and discriminant power are limited. In this article, we present a new robust discriminant subspace (RDS) learning method for feature extraction, with an objective function formulated in a different form. To guarantee the subspace to be robust and discriminative, we measure the within-class distances based on [Formula: see text]-norm and use [Formula: see text]-norm to measure the between-class distances. This also makes our method include rotational invariance. Since the proposed model involves both [Formula: see text]-norm maximization and [Formula: see text]-norm minimization, it is very challenging to solve. To address this problem, we present an efficient nongreedy iterative algorithm. Besides, motivated by trace ratio criterion, a mechanism of automatically balancing the contributions of different terms in our objective is found. RDS is very flexible, as it can be extended to other existing feature extraction techniques. An in-depth theoretical analysis of the algorithm's convergence is presented in this article. Experiments are conducted on several typical databases for image classification, and the promising results indicate the effectiveness of RDS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...