Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 134993, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38943885

RESUMO

Nowadays, solar-driven interfacial steam generation (SISG) is a sustainable and green technology for mitigating the water shortage crisis. Nevertheless, SISG is suffering from the enrichment of volatile organic compounds in condensate water and non-volatile organic compounds in feed water in practical applications. Herein, taking inspiration from nature, a dual-functional bifacial-CuCoNi (Bi-CuCoNi) evaporator with a special biomimetic urchin-like microstructure was successfully prepared. The unique design with 2.5-Dimensional bifacial working sides and urchin-like light absorption microstructure provided the Bi-CuCoNi evaporator with remarkable evaporation performance (1.91 kg m-2 h-1 under 1 kW m-2). Significantly, due to the urchin-like microstructure, the adequately exposed catalytic active sites enabled the Bi-CuCoNi/peroxydisulfate (PDS) system to degrade non-volatile organic pollutants (removal rate of 99.3 % in feed water, close to 100 % in condensate water) and the volatile organic pollutants (removal rate of 99.1 % in feed water, 98.2 % in condensate water) simultaneously. Moreover, the Bi-CuCoNi evaporator achieved non-radical pathway degradation at whole-stages. The dual-functional evaporator successfully integrated advanced oxidation processes (AOPs) into SISG, providing a new idea for high-quality freshwater production from polluted wastewater. ENVIRONMENTAL IMPLICATION: Inspired by nature, a dual-functional bifacial CuCoNi evaporator with a special biomimetic urchin-like microstructure formed by CuCoNi oxide nanowires grown on nickel foam by the hydrothermal synthesis method was successfully prepared. The prepared Bi-CuCoNi evaporator can effectively degrade organic pollutants in feed water and condensate water simultaneously during SISG, thus generating high-quality fresh water. Meanwhile, the health risks associated with the accumulation of organic pollutants in water during traditional SISG were reduced via green and sustainable way. The spatial 2.5-Dimensional structural design of Bi-CuCoNi provided new insights for achieving efficient water evaporation and fresh water generation from various polluted wastewater.

2.
Sci Total Environ ; 932: 173042, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723975

RESUMO

The electro-Fenton with in situ generated 1O2 and •OH is a promising method for the degradation of micropollutants. However, its application is hindered by the lack of catalysts that can efficiently generate 1O2 and •OH from electrochemical oxygen reduction. Herein, N-doped stacked carbon nanosheets supported Fe single atoms (Fe-NSC) with FeN4 sites were designed for simultaneous generation of 1O2 and •OH to enhance electro-Fenton degradation. Due to the synergistic effect of 1O2 and •OH, a variety of contaminants (phenol, 2,4-dichlorophenol, sulfamethoxazole, atrazine and bisphenol A) were efficiently degraded with high kinetic constants of 0.037-0.071 min-1 by the electro-Fenton with Fe-NSC as cathode (-0.6 V vs Ag/AgCl, pH 6). Moreover, the superior performance for electro-Fenton degradation was well maintained in a wide pH range from 3 to 10 even with interference of various inorganic salt ions. It was found that FeN4 sites with pyridinic N coordination were responsible for its good performance for electro-Fenton degradation. Its 1O2 yield was higher than •OH yield, and the contribution of 1O2 was more significant than •OH for pollutant degradation.

3.
ACS Appl Mater Interfaces ; 15(38): 45441-45454, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702705

RESUMO

Solar-driven interfacial steam generation (SISG) is a promising technology for alleviating freshwater shortage. However, when the SISG technology is applied to wastewater treatment, the contaminant would be enriched in residual bulk water. Herein, a dual-functional evaporator was constructed via tactfully decorating Co/N-doped graphene oxide (GO) on melamine foam (MF), which can simultaneously achieve efficient vapor production and source water purification. N-doped carbon nanotubes (NCNTs) endowed evaporators with powerful light absorption and water transport performance, guaranteeing an evaporation rate of 2.02 kg m-2 h-1 under 1 sun irradiation. Meanwhile, the catalytic activity of the carbon layer was adjusted by the N dopant and embedded Co particles, providing abundant active sites to activate peroxymonosulfate (PMS). When treating the solution containing sulfamethoxazole (SMX), no SMX residues were detected in the remaining bulk water (up to 100% SMX degradation efficiency within 60 min), demonstrating that reactive oxygen species (ROS) were generated to attack SMX in the source water. The bifunctional evaporator successfully combined SISG and advanced oxidation processes (AOPs), providing an ingenious strategy for solving the problem of wastewater enrichment during SISG.

4.
J Colloid Interface Sci ; 650(Pt B): 1052-1063, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459729

RESUMO

Herein, a novel CuO catalyst functionalized Ti-based catalytic membrane (FCTM) was prepared via the regulated electro-deposition technique followed with low-temperature calcination. The morphology of CuO catalyst and oxygen vacancy (OV) content can be controlled by adjusting the preparation conditions, under optimal condition (400 °C, electrolyte as sulfuric acid), the fern-shaped CuO catalyst was formed and the OV content was up to its highest level. Under the optimal treatment condition, the 4-chlorophenol (4-CP) removal of the membrane filtration combined with peroxymonosulfate (PMS) activation (MFPA) process was up to 98.2% (TOC removal of 88.2%). Mechanism studying showed that the enhanced performance in this system was mainly due to the increased production of singlet oxygen (1O2) via the co-effect of fern-shaped CuO (increased specific surface area) and its fine-tuned OV (precursor of 1O2), which not only synergistically enhanced adsorption ability but also offered more active sites for PMS activation. Theoretical calculations showed that the OV-rich CuO displayed high adsorption energy for PMS molecule, leading to the change in OO and OH bond (tend to 1O2) of the PMS molecule. Finally, the possible three degradation pathways of 4-CP were formed by the electrophilic attacking of 1O2.

5.
Chemosphere ; 336: 139310, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354959

RESUMO

Solar interfacial evaporation is a potential technology to produce clean water due to its simplicity and being driven by renewable clean energy, but it still requires further development to break through the bottleneck of removing volatile organic compounds (VOCs), especially in wastewater treatment. Herein, we proposed a dual-functional hydrogel evaporator that coupled solar interfacial evaporation with Fenton reaction to simultaneously remove VOCs and non-volatile pollutants from water with low energy consumption and high efficiency. The evaporator was composed with ß-FeOOH and polydopamine (PDA) on an electrospun nanofibrous hydrogel. Arising from the PDA with excellent photothermal properties, the evaporator revealed a high light absorption characteristics (∼90%) and photothermal efficiency (83.4%), which ensured a favorable evaporation rate of 1.70 kg m-2 h-1 under one solar irradiation. More importantly, benefited from the coupled Fenton reaction, the VOCs removal rate of ß-FeOOH@PDA/polyvinyl alcohol nanofibrous hydrogel (ß-FeOOH@PPNH) reached 95.8%, which was 6.5 times than that of sole solar interfacial evaporation (14.8%). In addition, the evaporator exhibited an outstanding non-volatile pollutant removal capability and stable removal performance for organic pollutants over a long period of operation. The prepared ß-FeOOH@PPNH evaporator provides a promising idea for simultaneous removal of non-volatile pollutants and volatile pollutants performance in long-term water purification.


Assuntos
Poluentes Ambientais , Compostos Orgânicos Voláteis , Purificação da Água , Hidrogéis , Fenômenos Físicos , Água
6.
Environ Sci Pollut Res Int ; 30(27): 71088-71102, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156954

RESUMO

Persulfate activation is emerged as an alternative applied in environment remediation, but it is still a great challenge to develop highly active catalysts for efficient degradation of organic pollutants. Herein, a heterogeneous iron-based catalyst with dual-active sites was synthesized by embedding Fe nanoparticles (FeNPs) onto the nitrogen-doped carbon, which was used to activate peroxymonosulfate (PMS) for antibiotics decomposition. The systematic investigation indicated the optimal catalyst exhibited a significant and stable degradation efficiency of sulfamethoxazole (SMX), in which the SMX can be completely removed in 30 min even after 5 cycle tests. Such satisfactory performance was mainly attributed to the successful construction of electron-deficient C centers and electron-rich Fe centers via the short C-Fe bonds. These short C-Fe bonds accelerated electrons to shuttle from SMX molecules to electron-rich Fe centers with a low transmission resistance and short transmission distance, enabling Fe (III) to receive electrons to promote the regeneration of Fe (II) for durable and efficient PMS activation during SMX degradation. Meanwhile, the N-doped defects in the carbon also provided reactive bridges that accelerated the electron transfer between FeNPs and PMS, ensuring the synergistic effects toward Fe (II)/Fe (III) cycle to some extent. The quenching tests and electron paramagnetic resonance (EPR) indicated O2·- and 1O2 were the dominant active species during the SMX decomposition. As a result, this work provides an innovative method to construct a high-performance catalyst to active sulfate for organic contaminant degradation.


Assuntos
Ferro , Sulfametoxazol , Ferro/química , Sulfametoxazol/química , Carbono , Domínio Catalítico , Peróxidos/química
7.
J Colloid Interface Sci ; 640: 588-599, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878076

RESUMO

Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.

8.
Sci Total Environ ; 875: 162725, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906022

RESUMO

Heterogeneous electro-Fenton with in situ generated H2O2 and •OH is a cost-effective method for the degradation of refractory organic pollutants, in which the catalyst is an important factor affecting its degradation performance. Metal-free catalysts can avoid the potential risk of metal dissolution. However, it remains great challenge to develop efficient metal-free catalyst for electro-Fenton. Herein, ordered mesoporous carbon (OMC) was designed as a bifunctional catalyst for efficient H2O2 and •OH generation in electro-Fenton. The electro-Fenton system showed fast perfluorooctanoic acid (PFOA) degradation with kinetics constant of 1.26 h-1 and high total organic carbon (TOC) removal efficiency of 84.0 % after 3 h reaction. The •OH was the main species responsible for PFOA degradation. Its generation was promoted by the abundant oxygen functional groups such as C-O-C and the nano-confinement effect of mesoporous channels on OMCs. This study indicated that OMC is an efficient catalyst for metal-free electro-Fenton system.

9.
Environ Sci Pollut Res Int ; 30(12): 33795-33807, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495435

RESUMO

Nitrogen-doped carbon materials (NMC) are widely used in peroxymonosulfate-based advanced oxidation processes (PMS-AOPs). Despite great efforts to improve the specific surface area of and the content of N atoms in catalysts for enhancing catalytic performance, this does not mean that the catalytic performance will improve with the increasing specific surface area and nitrogen content. Therefore, it is the key to optimize pore structure of NMC for maximizing the catalytic performance of nitrogen active sites. Herein, we synthesized the NMC as an efficient catalyst to activate PMS for the phenol removal. It can be found that the mesopore structure significantly accelerated the diffusion of reactants and might build the spatial confinement effect to improve the utilization of short life free radicals for further improving the removal efficiency. The removal efficiency of 1NMC750 (95%) with abundant mesopore channels was much higher than that of 1NMC750-0F127 (20%) with abundant micropore channels. Furthermore, the mechanism was confirmed to be radical (SO4•-, •OH) and non-radical (1O2, electron transfer) pathways. This study proposed a new insight for improving the catalytic performance of carbon materials by coordinating the pore structure.


Assuntos
Carbono , Nitrogênio , Carbono/química , Nitrogênio/química , Peróxidos/química , Oxirredução , Fenóis
10.
Chemosphere ; 309(Pt 2): 136818, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240646

RESUMO

Solar desalination is recognized as one of the eco-friendly and sustainable ways to alleviate the global freshwater crisis but still requires further research, especially in developing high-performance evaporators. Herein, we prepared an efficient carbon nanotubes (CNTs)@polyvinyl alcohol (PVA) nanofibrous hydrogel evaporator by electrospinning and subsequently chemical cross-linking treatment. Due to CNTs with good light absorption capacity, the evaporator exhibited an excellent light absorption capacity (>90%) throughout the full spectrum range (250-2500 nm). Meanwhile, the interconnected pores from electrospinning, as well as the intermediate water in the hydrogel, ensured the prepared evaporator with a favorable evaporation rate of up to 2.16 kg m-2 h-1 and photothermal conversion efficiency of ∼88.13% under one solar light intensity. For long-term seawater desalination, the CNTs@PVA nanofibrous hydrogel evaporator also presented superior salt resistance, durability and good self-cleaning properties. Besides, various non-volatile pollutants can be completely removed by the prepared evaporator during the wastewater purification. As a result, this work is considered to provide a new direction for developing high-performance evaporators to provide freshwater through seawater desalination and wastewater purification.


Assuntos
Angiopatias Diabéticas , Neuropatias Diabéticas , Poluentes Ambientais , Nanofibras , Nanotubos de Carbono , Purificação da Água , Humanos , Álcool de Polivinil , Proteínas Sanguíneas , Porosidade , Fosfolipídeos , Água , Água do Mar , Hidrogéis
11.
J Colloid Interface Sci ; 626: 283-295, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797870

RESUMO

Electrocatalytic filtration process adopting the electrocatalytic membrane as both filtration membrane and active electrode showed great prospect on the organic pollutant removal from water. In this work, a high-performance metal-free polypyrrole (PPy) coated carbon-based electrocatalytic membrane (PPy@CCM) was developed through the facile and controllable electro-polymerization deposition method. Structural properties and electrochemical performance of the prepared PPy@CCM were characterized systematically. The influences of preparation parameters and operational parameters on water treatment performance of PPy@CCM were also investigated. Results indicates that the spherical PPy particles uniformly distributed on the surface of PPy@CCM. Coating with PPy particles can significantly improve the hydrophilicity and electrochemical activity of CCM, therefore PPy@CCM has lower hydraulic resistance and higher water treatment performance than CCM. The phenol and chemical oxygen demand (COD) removal rates obtained by PPy@CCM are up to 99.51% and 89.90%, respectively, under the optimal condition of 2.0 V cell potential, 2.50 g·L-1 Na2SO4, 1.5 ml·min-1 flow rate and 50 mg·L-1 phenol, and only 0.5 kWh·kgCOD-1 energy consumption is consumed. In addition, PPy@CCM also exhibits good treatment performance in different water matrixes. Moreover, PPy@CCM has good stability for several cycle operation and considerable applicability for different types of organic pollutants removal. The oxidation mechanism study reveals that PPy@CCM has both direct and indirect oxidation activity during the electrocatalytic filtration treatment, and the coating of PPy can improve the direct oxidation ability and ·OH yield of CCM.


Assuntos
Polímeros , Pirróis , Carbono , Fenóis , Polímeros/química , Pirróis/química
12.
J Colloid Interface Sci ; 622: 1-10, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490612

RESUMO

Different Cu precursors were adopted to adjust the isolated Cu2+ ions and CuO species in the Cu-SSZ-13 catalysts. The Cu2+ ions were mainly located at eight-member rings in the catalysts with the Cu precursors of Cu(NO3)2 (Fresh-I) and CuSO4 (Fresh-II), while that located at six-member rings in the catalysts with the Cu precursors of CuCl2 (Fresh-III) and Cu(CH3COO)2 (Fresh-IV). All catalysts showed>90% of NO conversion and 100% of N2 selectivity at 200-680 °C. Fresh-I and Fresh-II catalysts showed an unexpected increase of the high-temperature activity after hydrothermal treatment. The characterizations revealed that the hydrothermal treatment promoted the production of CuO species, which accelerated the adsorption of NOx species to enhance the high-temperature SCR activity. Moreover, the SCR reaction pathway changed from Langmuir-Hinshelwood to Eley-Rideal mechanisms for the Fresh-II catalyst after the hydrothermal treatment, which was verified by in situ DRIFTS.


Assuntos
Amônia , Catálise , Cobre , Íons , Oxirredução
13.
Chemosphere ; 296: 134017, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183582

RESUMO

Acidic organic wastewater with toxic and carcinogenic properties has long been a tough problem for industrial treatment. To break down the barrier of poor acidic stability as well as the high cost of materials and reactors, a novel strategy of utilizing a high-performance and acid-tolerant TiO2/carbon electrocatalytic membrane (TiO2/CEM) for acidic organic wastewater treatment was proposed. Study results showed that high concentrations of organic pollutants were separated and degraded by the synergistic effects of membrane separation and electrocatalytic oxidation simultaneously on the TiO2/CEM. The great treatment performance with membrane removal efficiency of >97.4% was obtained by treating acidic rhodamine B (RhB) dye wastewater under optimized applied voltage. Treatment experiments under various pH and electrochemical tests demonstrated the outstanding acid-tolerant property and long service life of TiO2/CEM. Furthermore, the feasibility of TiO2/CEM for industrial application and various acidic organic wastewater treatment was proved by treating typical organic pollutants (phenol, tetracycline and oil) under high acidic circumstances.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Carbono , Titânio/química , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
14.
Chemosphere ; 291(Pt 1): 132744, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743795

RESUMO

Forward osmosis (FO) has drawn wide attention as a promising method to address world-wide water crisis due to the advantages of low-energy consumption and easy separation operation. Unfortunately, the trade-off between permeability and selectivity as well as membrane fouling hindered the application of forward osmosis. Surface modification is a feasible method to address these issues. However, there is a lack of systematic evaluation about the effect of modification position on FO performance due to the asymmetric structure of thin film composite (TFC) FO membrane. To provide new insights into the design of FO membrane with satisfied permeability and fouling resistance, novel TFC FO membranes were fabricated by introducing polydopamine (PDA) on the support layer (TFC-I) or active layer (TFC-S), respectively. The surface morphology, chemical composition and wettability of the fabricated membrane were studied. It was found that the surface wettability of the modified membrane was improved greatly compared to pristine TFC membrane (TFC-C). Moreover, TFC-S membrane displayed a rougher surface than that of TFC-I membrane. As a result, a superior TFC-S membrane with a water flux of 60.95 ± 3.15 L m-2h-1 in AL-DS mode was obtained, which was 72.61% and 17.87% higher than that of TFC-C and TFC-I membrane, respectively. In addition, the TFC-S membrane also presented an excellent fouling resistance and membrane regeneration performance during the three organic fouling cycle experiments. The results indicated that the introduction of PDA as a surface coating for TFC membranes modification guaranteed the high-performance and fouling resistance. Especially, the PDA coating on the support layer surface resulted in an enhancement in permeability, while both the permeability and anti-fouling performance were significantly improved with the PDA coating on the polyamide active layer surface. This study provides new insights into the development of modification TFC-FO membranes for practical applications in water treatment.


Assuntos
Incrustação Biológica , Purificação da Água , Incrustação Biológica/prevenção & controle , Indóis , Membranas Artificiais , Osmose , Permeabilidade , Polímeros
15.
J Nanosci Nanotechnol ; 20(9): 5874-5884, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331193

RESUMO

In order to achieve the effective removal of Pb2+ from low-concentration wastewater as well as the lead recovery for direct reuse simultaneously, a simple electrodeposition method was used in this study. In this process, synthetic lead wastewater with low concentration of 4, 8, 12 and 16 mg/L was treated, more than 67% lead was recovered from wastewater and a PbO2/Ti electrode was fabricated in a simple reaction tank. The test results of characterizations confirmed that PbO2 nanoeletrocatalyst was successfully deposited on a Ti substrate. Electrochemical activity tests indicated that PbO2/Ti electrode had advantages of high oxygen evolution potential (1.90 V) and low electron transfer resistance. Furthermore, the results of electrocatalytic degradation experiments demonstrated that prepared PbO2/Ti electrode had the superb decolorization and mineralization ability on Basic Red. After 120 min of electrolysis, the Basic Red removal efficiency and TOC removal efficiency could reach to 89.38% and 68.82%, respectively, which was 5.2 and 7.1 times higher than the Ti substrate alone. Besides, the calculated mineralization current efficiency for PbO2/Ti electrode increased from 5.18% to 36.74% after PbO2 depositing, and thus an economical benefit was obtained by more than 5 times energy saving. The influences of the applied current density, initial dye concentration, electrolyte concentration and solution pH on the oxidation efficiency were also investigated and optimized. The prepared PbO2/Ti electrode also showed a great stability with high dye removal efficiency (above 85%) after 10 times repeated experiments. These results suggest that it is a promising technological process to remove and recover lead from low-concentration wastewater efficiently and reuse them as electrocatalyst for other organic wastewater treatments.

16.
J Nanosci Nanotechnol ; 20(9): 5951-5958, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331201

RESUMO

Membrane separation is recognized to be a promising technology for addressing water crisis. Unfortunately, the emergence of membrane fouling and low removal efficiency makes it unattractive for practical application. Herein, an electrochemical multifunctional CNT/Al2O3 membrane was designed coupled multiple electrochemical functions with pore sieving, which could maintain high permeability and achieve good removal efficiency simultaneously, even for those molecules with size smaller than pore size. The multifunctional CNT/Al2O3 membrane possessing a pore size of 140 nm and pure water flux of 869.6 L · m-2 · h-1 · bar-1 was prepared. The results show that the multifunctional CNT/Al2O3 membrane exhibited a good anti-fouling properties for both bio-fouling and chemical fouling under electrochemical assistance with a permeability 3.6 and 1.5 times higher than those of CNT/Al2O3 membrane alone for the treatment of E. coli and humic acid, respectively. In addition, the CNT/Al2O3 membrane with electrochemical assistance also shows a high removal efficiency for the treatment of perfluorooctane sulphonate (PFOS) and phenol whose sizes are smaller than pore size. As for the treatment of surface water, it also presented a good performance. Finally, the regeneration of the membrane was investigated and the fouled membrane was reused through an electrochemical assisted back-wash method.

17.
Proc Natl Acad Sci U S A ; 116(52): 26353-26358, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822615

RESUMO

Electrochemical reduction of CO2 to multicarbon products is a significant challenge, especially for molecular complexes. We report here CO2 reduction to multicarbon products based on a Ru(II) polypyridyl carbene complex that is immobilized on an N-doped porous carbon (RuPC/NPC) electrode. The catalyst utilizes the synergistic effects of the Ru(II) polypyridyl carbene complex and the NPC interface to steer CO2 reduction toward C2 production at low overpotentials. In 0.5 M KHCO3/CO2 aqueous solutions, Faradaic efficiencies of 31.0 to 38.4% have been obtained for C2 production at -0.87 to -1.07 V (vs. normal hydrogen electrode) with 21.0 to 27.5% for ethanol and 7.1 to 12.5% for acetate. Syngas is also produced with adjustable H2/CO mole ratios of 2.0 to 2.9. The RuPC/NPC electrocatalyst maintains its activity during 3-h CO2-reduction periods.

18.
Ecotoxicol Environ Saf ; 185: 109662, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31550568

RESUMO

Phenol, as a representative organic pollutant in aquatic environments, has posed a serious threat to humans and ecosystem. In this work, a novel integration system combined coal-based carbon membrane with sulfate radicals-based advanced oxidation processes (SR-AOPs) was designed for degradation of phenol. The integrated system achieved 100% removal efficiency under the optimal condition (peroxydisulfate dosage is 0.2 g/L, at alkaline condition with 2 mL/min flow velocity). The quenching experiments revealed that the efficient removal of phenol by the integrated system were attributed to the co-existence of radical and nonradical mechanisms. This study proposes a green and efficient technique for the removal of phenol.


Assuntos
Carbono/química , Membranas Artificiais , Fenol/análise , Sulfatos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Carvão Mineral , Ecossistema , Modelos Teóricos , Oxirredução , Águas Residuárias/química
19.
Environ Sci Technol ; 53(9): 5195-5201, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957993

RESUMO

Electrochemical oxidation based on SO4•- and •OH generated from sulfate electrolyte is a cost-effective method for degradation of persistent organic pollutants (POPs). However, sulfate activation remains a great challenge due to lack of active and robust electrodes. Herein, a B/N codoped diamond (BND) electrode is designed for electrochemical degradation of POPs via sulfate activation. It is efficient and stable for perfluorooctanoic acid (PFOA) oxidation with first-order kinetic constants of 2.4 h-1 and total organic carbon removal efficiency of 77.4% (3 h) at relatively low current density of 4 mA cm-2. The good activity of BND mainly originates from a B and N codoping effect. The PFOA oxidation rate at sulfate electrolyte is significantly enhanced (2.3-3.4 times) compared with those at nitrate and perchlorate electrolytes. At sulfate, PFOA oxidation rate decreases slightly in the presence of •OH quencher while it declines significantly with SO4•- and •OH quenchers, indicate both SO4•- and â€¢OH contribute to PFOA oxidation but SO4•- contribution is more significant. On the basis of intermediates analysis, a proposed mechanism for PFOA degradation is that PFOA is oxidized to shorter chain perfluorocarboxylic acids gradually by SO4•- and •OH until it is mineralized.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Caprilatos , Diamante , Eletrodos , Oxirredução , Sulfatos
20.
Environ Sci Technol ; 53(9): 5292-5300, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933494

RESUMO

Excellent fouling resistance to various foulants is crucial to maintain the separation performance of membranes in providing potable water. Antimicrobial modification is effective for antibiofouling but fails to mitigate organic fouling. Improving surface charges can improve the resistance to charged foulants, but the lack of antimicrobial ability results in bacterial aggregation. Herein, a silver nanoparticle modified carbon nanotube (Ag-CNT)/ceramic membrane was prepared with enhanced antifouling and antimicrobial properties under electrochemical assistance. The presence of silver nanoparticles endows the composite membrane with antimicrobial ability by which biofilm formation is inhibited. Its steady-state flux is 1.9 times higher than that for an unmodified membrane in filtering bacterial suspension. Although the formation of organic fouling did weaken the biofouling resistance, the negatively charged bacteria and organic matter can be sufficiently repelled away from the cathodic membrane under electrochemical assistance. The flux loss under a low-voltage of 2.0 V decreased to <10% from >35% for the membrane alone when bacteria and organic matter coexisted in the feedwater. More importantly, silver dissolution was significantly inhibited via an in situ electroreduction process by which the Ag+ concentration in the effluent (<1.0 µg/L) was about 2 orders of magnitude lower than that without voltage. The integration of antimicrobial modification and electrochemistry offers a new prospect in the development of membranes with high fouling resistance in water treatment.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Nanopartículas Metálicas , Nanotubos de Carbono , Membranas Artificiais , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...