Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian J Androl ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37966336

RESUMO

ABSTRACT: Tumor-derived exosomes have been shown to play a key role in organ-specific metastasis, and the androgen receptor regulates prostate cancer (PCa) progression. It is unclear whether the androgen receptor regulates the recruitment of prostate cancer cells to the bone microenvironment, even bone metastases, through exosomes. Here, we found that exosomes isolated from PCa cells after knocking down androgen receptor (AR) or enzalutamide treatment can facilitate the migration of prostate cancer cells to osteoblasts. In addition, AR silencing or treatment with the AR antagonist enzalutamide may increase the expression of circular RNA-deoxyhypusine synthase (circ-DHPS) in PCa cells, which can be transported to osteoblasts by exosomes. Circ-DHPS acts as a competitive endogenous RNA (ceRNA) against endogenous miR-214-3p to promote C-C chemokine ligand 5 (CCL5) levels in osteoblasts. Increasing the level of CCL5 in osteoblasts could recruit more PCa cells into the bone microenvironment. Thus, blocking the circ-DHPS/miR-214-3p/CCL5 signal may decrease exosome-mediated migration of prostate cancer cells to osteoblasts.

2.
RSC Adv ; 9(20): 11567-11575, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520231

RESUMO

MoSe2 is a typical transition-metal dichalcogenide material, and many researches have been focused on using its property of near infrared strong absorption for laser mediated photothermal cancer treatment. However, the anti-canter effect of MoSe2 and its possible mechanism in renal cell carcinoma (RCC) is still unclear. RCC has high incidence of metastasis, which is known as one of the most lethal malignancies in the urological system. This study revealed that the carbon-doped MoSe2 particles can obviously inhibit proliferation for 786-O and ACHN cells. Meanwhile, the carbon-doped MoSe2 nanoparticles have little impact on the viability of KH-2 cells in vitro. The mechanism analysis revealed that the carbon-doped MoSe2 particles have hydrogen bond effect in aqueous solution, and the particle aggregation effect caused the KH-2 cells to have high viability. The carbon-doped MoSe2 nanoparticles with minimal toxicity may be a potential therapeutic candidate against RCC.

3.
Theranostics ; 8(1): 109-123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290796

RESUMO

Rationale: Docetaxel-mediated chemotherapy is the first-line standard approach and has been determined to show a survival advantage for metastatic castration-resistant prostate cancer (mCRPC) patients. However, a substantial proportion of patients eventually becomes refractory due to drug resistance. The detailed mechanisms remain unclear. We have previously reported that Prostate Leucine Zipper (PrLZ), a specific oncogene of prostate cancer (PCa), promotes PCa cell growth at the castration-resistant stage, thus suggesting a vital role of PrLZ in the progression of CRPC. In this study, we aimed to investigate the role of PrLZ in docetaxel resistance in PCa, focusing on PrLZ-regulating autophagy pathway. Methods: Human PCa PC3, LNCaP and C4-2 cell lines were used as the model system in vitro and PCa xenografts and PrLZ-knockout mice were used as the model system in vivo. Docetaxel-induced cell death and apoptosis in PCa were determined by MTT and flow cytometry assay. The role of PrLZ on the regulation of autophagy and liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway was analyzed using immunoblotting, immunoprecipitation, siRNA silencing and plasmid overexpression. Results: PrLZ increased docetaxel-mediated drug resistance both in vitro and in vivo. Mechanistic dissection revealed that PrLZ interacted with LKB1 and further inhibited the activation of LKB1/AMPK signals, which negatively contributed to the induction of autophagy. Moreover, PrLZ/LKB1-mediated autophagy conferred resistance to docetaxel-induced cell death and apoptosis both in vitro and in vivo. Conclusion: These findings identify a novel role of PrLZ in autophagy manipulation and provide new insight into docetaxel chemoresistance in PCa, suggesting a new strategy for treating mCRPC by targeting this newly identified signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Taxoides/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Docetaxel , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...