Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 318, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334257

RESUMO

BACKGROUND: Bufalin (BA) is a potent traditional Chinese medicine derived from toad venom. It has shown significant antitumor activity, but its use is limited by cardiotoxicity, which necessitates innovative delivery methods, such as rod-shaped mesoporous silica nanoparticles (rMSNs). rMSNs have been extensively employed for reducing drug toxicity and for controlled or targeted drug delivery in tumor therapy. However, their potential in delivering BA has not been completely elucidated. Therefore, in this study, BA-loaded rMSNs (BA-rMSNs) were developed to investigate their potential and mechanism in impairing colon cancer cells. METHODS: rMSNs were developed via the sol‒gel method. Drug encapsulation efficiency and loading capacity were determined to investigate the advantages of the rMSN in loading BA. The antiproliferative activities of the BA-rMSNs were investigated via 5-ethynyl-2'-deoxyuridine and CCK-8. To evaluate cell death, Annexin V-APC/PI apoptotic and calcein-AM/PI double staining were performed. Western blotting, oil red O staining, and Nile red solution were employed to determine the ability of BA-rMSNs to regulate lipophagy. RESULTS: The diameter of the BA-rMSNs was approximately 60 nm. In vitro studies demonstrated that BA-rMSNs markedly inhibited HCT 116 and HT-29 cell proliferation and induced cell death. In vivo studies revealed that BA-rMSNs reduced BA-mediated cardiotoxicity and enhanced BA tumor targeting. Mechanistic studies revealed that BA-rMSNs blocked lipophagy. CONCLUSIONS: rMSNs reduced BA-mediated cardiotoxicity and impaired the growth of colon cancer cells. Mechanistically, antitumor activity depends on lipophagy.


Assuntos
Bufanolídeos , Cardiotoxicidade , Neoplasias do Colo , Nanopartículas , Dióxido de Silício , Humanos , Bufanolídeos/farmacologia , Bufanolídeos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Dióxido de Silício/química , Animais , Nanopartículas/química , Cardiotoxicidade/prevenção & controle , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Células HT29 , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mil Med Res ; 11(1): 35, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835066

RESUMO

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/epidemiologia , Tumores Neuroendócrinos/diagnóstico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Neoplasias Intestinais/terapia , Neoplasias Intestinais/epidemiologia , Neoplasias Intestinais/diagnóstico
3.
Drug Resist Updat ; 71: 101005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647746

RESUMO

AIMS: Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS: The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS: CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS: Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Cardiotoxicidade , Membrana Celular , Resistência a Múltiplos Medicamentos , Neoplasias Pancreáticas
4.
Mol Cancer ; 22(1): 5, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627693

RESUMO

BACKGROUND: Accumulated evidence highlights the significance of the crosstalk between epigenetic and epitranscriptomic mechanisms, notably 5-methylcytosine (5mC) and N6-methyladenosine (m6A). Herein, we conducted a widespread analysis regarding the crosstalk between 5mC and m6A regulators in hepatocellular carcinoma (HCC). METHODS: Pan-cancer genomic analysis of the crosstalk between 5mC and m6A regulators was presented at transcriptomic, genomic, epigenetic, and other multi-omics levels. Hub 5mC and m6A regulators were summarized to define an epigenetic and epitranscriptomic module eigengene (EME), which reflected both the pre- and post-transcriptional modifications. RESULTS: 5mC and m6A regulators interacted with one another at the multi-omic levels across pan-cancer, including HCC. The EME scoring system enabled to greatly optimize risk stratification and accurately predict HCC patients' clinical outcomes and progression. Additionally, the EME accurately predicted the responses to mainstream therapies (TACE and sorafenib) and immunotherapy as well as hyper-progression. In vitro, 5mC and m6A regulators cooperatively weakened apoptosis and facilitated proliferation, DNA damage repair, G2/M arrest, migration, invasion and epithelial-to-mesenchymal transition (EMT) in HCC cells. The EME scoring system was remarkably linked to potential extrinsic and intrinsic immune escape mechanisms, and the high EME might contribute to a reduced copy number gain/loss frequency. Finally, we determined potential therapeutic compounds and druggable targets (TUBB1 and P2RY4) for HCC patients with high EME. CONCLUSIONS: Our findings suggest that HCC may result from a unique synergistic combination of 5mC-epigenetic mechanism mixed with m6A-epitranscriptomic mechanism, and their crosstalk defines therapeutic response and pharmacogenomic landscape.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , 5-Metilcitosina , Apoptose , Farmacogenética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA