Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37185551

RESUMO

Enzymes constitute an extremely important class of biomacromolecules with diverse catalytic functions, which have been validated as key mediators for regulating cellular metabolism and maintaining homeostasis in living organisms [...].


Assuntos
Técnicas Biossensoriais
2.
Analyst ; 148(10): 2225-2236, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092796

RESUMO

Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Obesidade , Triglicerídeos
3.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832049

RESUMO

Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and inhibition of hPL is effective in reducing triglyceride intake, thereby preventing and treating obesity. In this study, a series of fatty acids with different carbon chain lengths were constructed to the fluorophore resorufin based on the substrate preference of hPL. Among them, RLE was found to have the best combination of stability, specificity, sensitivity and reactivity towards hPL. Under physiological conditions, RLE can be rapidly hydrolyzed by hPL and released to resorufin, which triggered approximately 100-fold fluorescence enhancement at 590 nm. RLE was successfully applied for sensing and imaging of endogenous PL in living systems with low cytotoxicity and high imaging resolution. Moreover, a visual high-throughput screening platform was established using RLE, and the inhibitory effects of hundreds of drugs and natural products toward hPL were evaluated. Collectively, this study reports a novel and highly specific enzyme-activatable fluorogenic substrate for hPL that could serve as a powerful tool for monitoring hPL activity in complex biological systems and showcases the potential to explore physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Oxazinas
4.
Biosensors (Basel) ; 11(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436092

RESUMO

Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.


Assuntos
Técnicas Biossensoriais , Tirosina/análise , Humanos , Cinética , Melanoma , Monofenol Mono-Oxigenase , Oxirredução , Neoplasias Cutâneas , Espectrofotometria , Melanoma Maligno Cutâneo
5.
J Enzyme Inhib Med Chem ; 36(1): 1079-1087, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34030574

RESUMO

Inhibitors of COMT are clinically used for the treatment of Parkinson's disease. Here, we report the first natural pentacyclic triterpenoid-type COMT inhibitors and their structure-activity relationships and inhibition mechanism. The most potent compounds were found to be oleanic acid, betulinic acid and celastrol with IC50 values of 3.89-5.07 µM, that acted as mixed (uncompetitive plus non-competitive) inhibitors of COMT, representing a new skeleton of COMT inhibitor. Molecular docking suggested that they can specifically recognise and bind with the unique hydrophobic residues surrounding the catechol pocket. Furthermore, oleanic acid and betulinic acid proved to be less disruptive of mitochondrial membrane potential (MMP) compared to tolcapone, thus reducing the risk of liver toxicity. These findings could be used to produce an ideal lead compound and to guide synthetic efforts in generating related derivatives for further preclinical testing.


Assuntos
Produtos Biológicos/farmacologia , Catecol O-Metiltransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Triterpenos Pentacíclicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
6.
Fitoterapia ; 152: 104913, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932529

RESUMO

Vine tea has been used as a traditionally functional herbal tea in China for centuries, which exhibits paramount potential for chronic metabolic diseases. Herein, the inhibitory potential of vine tea toward human catechol-O-methyltransferase (hCOMT) was investigated. A practical bioactivity-guided fractionation combined with chemical profiling strategy was developed to identify the naturally occurring hCOMT inhibitors. Five flavonoids in vine tea displayed moderate to strong inhibition on hCOMT with IC50 values ranging from 0.96 µM to 42.47 µM, in which myricetin was the critically potent constituent against hCOMT. Inhibition kinetics assays and molecular docking simulations showed that myricetin could bind to the active site of COMT and inhibited COMT-catalyzed 3-BTD methylation in a mixed manner. Collectively, our findings not only suggested that the strong hCOMT inhibition of vine tea has guiding significance in the drug exposure of catechol drugs, but also identified a promising lead compound for developing more efficacious hCOMT inhibitors.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Flavonoides/farmacologia , Chás de Ervas , Inibidores de Catecol O-Metiltransferase/isolamento & purificação , Flavonoides/isolamento & purificação , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
7.
J Pharm Anal ; 11(1): 15-27, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717608

RESUMO

Mammalian catechol-O-methyltransferases (COMT) are an important class of conjugative enzymes, which play a key role in the metabolism and inactivation of catechol neurotransmitters, catechol estrogens and a wide range of endobiotics and xenobiotics that bear the catechol group. Currently, COMT inhibitors are used in combination with levodopa for the treatment of Parkinson's disease in clinical practice. The crucial role of COMT in human health has raised great interest in the development of more practical assays for highly selective and sensitive detection of COMT activity in real samples, as well as for rapid screening and characterization of COMT inhibitors as drug candidates. This review summarizes recent advances in analytical methodologies for sensing COMT activity and their applications. Several lists of biochemical assays for measuring COMT activity, including the probe substrates, along with their analytical conditions and kinetic parameters, are presented. Finally, the challenges and future perspectives in the field, such as visualization of COMT activity in vivo and in situ, are highlighted. Collectively, this review article overviews the practical assays for measuring COMT activities in complex biological samples, which will strongly facilitate the investigations on the relevance of COMT to human diseases and promote the discovery of COMT inhibitors via high-throughput screening.

8.
RSC Adv ; 11(17): 10385-10392, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423513

RESUMO

Human catechol-O-methyltransferase (hCOMT) is considered a therapeutic target due to its crucial roles in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs. There are nevertheless few safe and effective COMT inhibitors and there lacks a diversity in structure. To discover novel safe and effective hCOMT inhibitors from herbal products, in this study, 53 herbal products were collected and their inhibitory effects against hCOMT were investigated. Among them, Scutellariae radix (SR) displayed the most potent inhibitory effect on hCOMT with an IC50 value of 0.75 µg mL-1. To further determine specific chemicals as COMT inhibitors, an affinity ultrafiltration coupled with liquid chromatography-mass spectrometry method was developed and successfully applied to identify COMT inhibitors from SR extract. The results demonstrated that scutellarein 2, baicalein 9 and oroxylin A 12 were potent COMT inhibitors, showing a high binding index (>3) and very low IC50 values (32.9 ± 3.43 nM, 37.3 ± 4.32 nM and 18.3 ± 2.96 nM). The results of inhibition kinetics assays and docking simulations showed that compounds 2, 9 and 12 were potent competitive inhibitors against COMT-mediated 3-BTD methylation, and they could stably bind to the active site of COMT. These findings suggested that affinity ultrafiltration allows a rapid identification of natural COMT inhibitors from a complex plant extract matrix. Furthermore, scutellarein 2, baicalein 9 and oroxylin A 12 are potent inhibitors of hCOMT in SR, which could be used as promising lead compounds to develop more efficacious non-nitrocatechol COMT inhibitors for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...