Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548073

RESUMO

Conventional chemical extraction methods may lead to overestimate or underestimate bioaccessibility due to their inability to provide realistic kinetic information regarding PAHs in soils. In this study, we propose the use of magnetic solid phase extraction (MSPE) technique for assessing the bioaccessibility of PAHs in the soil-earthworm system. Firstly, a novel polydopamine-coated magnetic core-shell microspheres (Fe3O4-C16@PDA) was developed by a one-pot sol-gel and self-polymerization method. The PDA coatings not only enhance the hydrophilicity of material surfaces but also exhibit excellent biocompatibility. The maximum adsorption capacity of Fe3O4-C16@PDA for 16 PAHs was 52.72 mg g-1, indicating that the proposed material fulfills the assessment requirements for highly contaminated soil. To compare the measurement of PAHs and their uptake by earthworms (Eisenia fetida), experiments were conducted using four different soils with varying properties. The desorption kinetics data obtained from these experiments demonstrated that the capability of the MSPE in accurately predicting the bioavailable portions of PAHs. After a 28-day exposure, the best predictor of bioavailable PAHs in earthworms was MSPE method exhibited the highest correlation coefficient (R2 > 0.90), and its slopes in the four soils were 0.972, 0.961, 1.012, and 0.962, respectively, all close to 1. These results demonstrate that the MSPE method successfully mimics the conditions encountered in soil-earthworm systems and effectively assess bioaccessibility of PAHs in soils.


Assuntos
Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Solo/química , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Extração em Fase Sólida , Fenômenos Magnéticos
2.
J Hazard Mater ; 459: 132086, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37480607

RESUMO

Developing effective and safe catalysts operated in the in-depth removal of iodinated X-ray contrast media is important for overcoming slow removal efficiency-induced highly toxic iodine-replaced disinfection byproducts (I-DBPs). In this study, a novel oxygen vacancies enriched heterogeneous biochar catalyst (Mo-Co-ECM) from the invasive plant was synthesized by a facile one-step hydrothermal carbonization method and used for the in-depth removal of iohexol (IOH) by the activation of peroxymonosulfate (PMS). The results indicated that after adding PMS for 3 min, the removal efficiency of IOH in Mo-Co-ECM/PMS system reached 100% and exhibited a superior degradation efficiency compared to Co-ECM/PMS and ECM/PMS system. Only nine I-DBPs were found during the degradation, which were dominated by small molecules compounds (MW<400). The in-depth degradation suppresses the formation of the toxic intermediates. The density functional theory and electron spin resonance showed that due to the existence of Mo and oxygen vacancies, the electron transfer ability was improved, which accelerated the cycle of Co3+/Co2+, so as to enhance the catalytic activity of Mo-Co-ECM/PMS system. This study is expected to provide a general way for decreasing the production of toxic intermediates during the advanced oxidation of contaminants, meanwhile recovering resources.


Assuntos
Iohexol , Água , Oxigênio , Modelos Teóricos
3.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375399

RESUMO

Imidazole-based compounds are a series of heterocyclic compounds that exhibit a wide range of biological and pharmaceutical activities. However, those extant syntheses using conventional protocols can be time-costly, require harsh conditions, and result in low yields. As a novel and green technique, sonochemistry has emerged as a promising method for organic synthesis with several advantages over conventional methods, including enhancing reaction rates, improving yields, and reducing the use of hazardous solvents. Contemporarily, a growing body of ultrasound-assisted reactions have been applied in the preparation of imidazole derivatives, which demonstrated greater benefits and provided a new strategy. Herein, we introduce the brief history of sonochemistry and focus on the discussion of the multifarious approaches for the synthesis of imidazole-based compounds under ultrasonic irradiation and its advantages in comparison with conventional protocols, including typical name-reactions and various sorts of catalysts in those reactions.

4.
J Chromatogr A ; 1613: 460676, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31727351

RESUMO

Due to the trace levels of polycyclic aromatic hydrocarbons (PAHs) in soil and the complexity of soil matrices, effective sample pretreatment methods are of great significance to obtain accurate analytical results. In this paper, polydopamine (PDA) encapsulated Fe3O4 particles were used as seeds for in situ polymerization of divinylbenzene (DVB) to derive magnetic hybrid material Fe3O4@PDA@PDVB. Coupled with pressurized liquid extraction, Fe3O4@PDA@PDVB was investigated as a selective adsorbent for the extraction and cleanup of PAHs in soil. The prepared magnetic material was characterized and demonstrated to possess strong hydrophobicity and superparamagnetism. Under optimal conditions, Fe3O4@PDA@PDVB can effectively extract 15 PAHs from a 30% methanol solution within 2 min, and it is more selective for PAHs than for n-alkane in soil extracts. The matrix effect significantly decreased after extraction by the prepared material, which showed superiority to a silica gel column method (EPA 3630C Method). The developed method was linear (5-1000 ng g-1) with coefficient of determination (R2) ranging from 0.9986-0.9998, and the limits of detection were 0.13-0.54 ng g-1. Additionally, repetitive experiments indicated that the prepared material was reproducible and reusable with relative standard deviations below 8.4% and 8.6%, respectively. Finally, the new method was successfully employed to determine the concentrations of PAHs in genuine soil and standard reference material, and the results were comparable to those of widely utilized EPA methodology.


Assuntos
Técnicas de Química Analítica/métodos , Indóis/síntese química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Polímeros/síntese química , Poluentes do Solo/isolamento & purificação , Solo/química , Compostos de Vinila/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Extração Líquido-Líquido , Fenômenos Magnéticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Polimerização , Poluentes do Solo/análise
5.
Environ Pollut ; 255(Pt 1): 113168, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520911

RESUMO

Bioaccessibility measurements of polycyclic aromatic hydrocarbons (PAHs) in soils are significant for exposure risk assessment. The current physicochemical methods require tedious operation processes, underestimate the actual risks, or are unsuitable for high organic content soils. In this work, an efficient and convenient method based on polydopamine-coated polyethylene sieve plate (PDA@PESP) and hydroxypropyl-ß-cyclodextrin (HPCD) was developed to predict the bioaccessibility of PAHs in multi-type soils. The PDA@PESP can be prepared via in situ self-polymerization, allowing to extract PAHs from HPCD solution quantitatively and rapidly. When applied to evaluate the bioaccessibility with PDA@PESP as an adsorption sink and HPCD as a diffusive carrier, the proposed method can significantly improve the extractable fraction of PAHs compared to single HPCD extraction in particular for high organic carbon content soil and high-ring PAHs. The desorption kinetics data indicated that the method can predict the bioaccessible fraction of PAHs. In addition, the method predicted a satisfactory accumulation into earthworms (Eisenia fetida) with a slope statistically approximated to 1. A highly significant linear regression (R2 = 0.95) was also found between the proposed method and Tenax desorption in historically contaminated soils, demonstrating that the method is an efficient and convenient approach for the bioaccessibility prediction of PAHs in soils.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Indóis/metabolismo , Oligoquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietileno/metabolismo , Polímeros/metabolismo , Poluentes do Solo/análise , Adsorção , Animais , Bioacumulação/fisiologia , Solo/química
6.
Mikrochim Acta ; 186(3): 154, 2019 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-30712115

RESUMO

A new application of MOFs as adsorbents in the cleanup procedure of polycyclic aromatic hydrocarbons (PAHs) in soils was explored. Four MOFs, specifically MIL-101(Cr), MIL-125(Ti), MIL-100(Fe) and UiO-66(Zr), were synthesized and characterized. A screening study was carried out to select the best adsorbent for the purification of sixteen PAHs in complex soil extract. It is found that the nature of metal ion, pore size, surface area and surface charge affect the purification efficiencies of the various MOFs. MIL-101(Cr) was then selected because of its best purification efficiency. The effects of amount of adsorbent, cleanup solvent and cleanup time on cleanup efficiency were investigated. Under the optimum conditions, the matrix effect of the target analytes was reduced by more than 65%. The method was then combined with ultrasonic extraction and quantitation by gas chromatography with triple quadrupole mass spectrometric detection. The method allows for the determination of PAHs in soils with linear in the range of 5-5000 ng g-1 and with LODs between 50 and 420 pg g-1. The method was applied to the analysis of (spiked) soil samples, and results compared well with the established EPA method. Graphical abstract Schematic presentation of metal organic frameworks (MOF) as cleanup adsorbents for purifying polycyclic aromatic hydrocarbons in soil organic matter (SOM) and further determined by gas chromatography with triple quadrupole mass spectrometry detection (GC-MS/MS).

7.
J Chromatogr A ; 1568: 29-37, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30122166

RESUMO

Accurate analysis of polycyclic aromatic hydrocarbons (PAHs) in soils remains a challenge due to the complexity of sample matrices. In this paper, phenyl-modified magnetic mesoporous silica (Fe3O4@mSiO2-Ph-PTSA) was synthesized with p-toluenesulfonic acid (PTSA) as the catalyst and used as a selective adsorbent for the clean-up of PAHs extracted from soils. The material prepared without PTSA as the catalyst (Fe3O4@mSiO2-Ph) was synthesized for comparison. The synthesized materials were first systematically characterized and evaluated. It was found that the grafting amount of the phenyl group onto Fe3O4@mSiO2-Ph-PTSA was higher than that onto Fe3O4@mSiO2-Ph. The extraction efficiency obtained by extracting PAHs from the extracted soil matrix solution demonstrated that Fe3O4@mSiO2-Ph-PTSA possessed a much higher extraction efficiency than that of Fe3O4@mSiO2-Ph, which can be attributed to the greater amount of phenyl groups grafted on Fe3O4@mSiO2 in the presence of the PTSA catalyst. Moreover, contrast experiments showed that Fe3O4@mSiO2-Ph-PTSA displayed higher selectivity towards PAHs than towards n-alkanes and that the π-π interaction played a key role in the adsorption process. In the presence of the soil extract matrix, the parameters affecting the extraction efficiency of Fe3O4@mSiO2-Ph-PTSA for PAHs were optimized. Under the optimal conditions, coupled with pressurized liquid extraction and gas chromatograph-mass spectrometer, the proposed method for the determination of PAHs in soils was linear in the range of 5-500 ng g-1, and the correlation coefficients (R) ranged between 0.9994 and 0.9999. The limits of detection (LODs) and limits of quantification (LOQs), which were based on signal-to-noise ratios of 3 and 10, respectively, were in the range of 0.07-0.41 ng g-1 and 0.24-1.37 ng g-1. The developed method displayed a better clean-up effect than that for silica gel column method, and the matrix effect markedly decreased compared to that of the uncleaned condition. Finally, the developed method was successfully applied for the detection of PAHs in environmental soils, and the data were consistent with the results obtained by the silica gel column method. The analytical results were also consistent with those for the real environment.


Assuntos
Monitoramento Ambiental/métodos , Magnetismo , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Dióxido de Silício/síntese química , Solo/química , Extração em Fase Sólida , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Hidrocarbonetos Policíclicos Aromáticos/análise , Dióxido de Silício/química
8.
J Sep Sci ; 41(3): 669-677, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29068515

RESUMO

A time-saving method was applied to synthesize methyltrimethoxy-modified magnetic mesoporous silica with or without p-toluenesulfonic acid as the catalyst for magnetic solid-phase extraction. The synthesized materials were systematically characterized. Results demonstrated that methyltrimethoxy modified magnetic mesoporous silica with p-toluenesulfonic acid as the catalyst has a relatively smaller aperture and extreme hydrophobicity (water contact angle of 135°). To evaluate the feasibility of these prepared materials as effective adsorbents, it was combined with gas chromatography and electron capture detection to determine 26 polychlorinated biphenyls in environmental water. The result revealed that methyltrimethoxy modified magnetic mesoporous silica with p-toluenesulfonic acid as the catalyst had the best extraction efficiency and recovery. Under the optimized extracted conditions, the proposed method showed good linearity within the concentration range of 5 to 200 ng/L with correlation coefficients of 0.9969 to 0.9999. The limits of detection and quantification based on signal-to-noise ratios of 3 and 10 were in the range of 0.16 to 0.91 and 0.52 to 3.0 ng/L, respectively. The polychlorinated biphenyl concentrations in environmental water samples were successfully determined using the developed method. PCB008 and PCB110 were 4.05 and 8.52 ng/L in Red-Star lake water (Hubei Province, China), respectively.

9.
Water Sci Technol ; 75(5-6): 1399-1409, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28333055

RESUMO

A novel amino-functionalized magnetic silica (Fe3O4@SiO2-NH2) was easily prepared via a one-step method integrating the immobilization of 3-aminopropyltriethoxysilane with a sol-gel process of tetraethyl orthosilicate into a single process. This showed significant improvement in the adsorption capacity of anionic dyes. The product (Fe3O4@SiO2-NH2) was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectrometry, zeta potential and vibrating sample magnetometry. The adsorption performance of Fe3O4@SiO2-NH2 was then tested by removing acid orange 10 (AO10) and reactive black 5 (RB5) from the aqueous solutions under various experimental conditions including initial solution pH, initial dye concentrations, reaction time and temperature. The results indicated that the maximum adsorption capacity of AO10 and RB5 on Fe3O4@SiO2-NH2 was 621.9 and 919.1 mg g-1 at pH 2, respectively. The sorption isotherms fit the Langmuir model nicely. Similarly, the sorption kinetic data were better fitted into the pseudo-second order kinetic model than the pseudo-first order model. In addition, the thermodynamic data demonstrated that the adsorption process was endothermic, spontaneous and physical. Furthermore, Fe3O4@SiO2-NH2 could be easily separated from aqueous solutions by an external magnetic field, and the preparation was reproducible.


Assuntos
Corantes/isolamento & purificação , Fenômenos Magnéticos , Propilaminas/química , Silanos/química , Dióxido de Silício/química , Adsorção , Ânions/isolamento & purificação , Compostos Azo/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Naftalenossulfonatos/isolamento & purificação , Reprodutibilidade dos Testes , Soluções , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura , Termodinâmica , Poluentes Químicos da Água/isolamento & purificação
10.
Anal Bioanal Chem ; 409(13): 3337-3346, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28283719

RESUMO

Alkyl moieties which can retain target analytes due to their lipophilicity are important in sample preparation. In this work, hexadecyl-functionalized magnetic core-shell microspheres (Fe3O4@SiO2-C16) was successfully prepared by one-pot sol-gel method and used for magnetic solid-phase extraction of polychlorinated biphenyls (PCBs) in environmental water samples. Optimized preparation method was achieved by altering the adding moment of hexadecyl-silane. The resultant materials were systematically characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, energy dispersive X-ray spectrometry, tensionmeter, and vibrating sample magnetometer. The results demonstrated that the optimized adsorbent exhibited core-shell structure, superparamagnetic (66 emu/g), and extremely hydrophobic (water contact angle of 122°) properties. To evaluate the extraction performance, the prepared material coupled with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) was applied to determinate PCBs. The extraction conditions were optimized. Under the optimal conditions, the proposed method showed a good linearity range of 1-100 ng L-1 with correlation coefficients (R) of 0.9989-0.9993. Based on a signal-to-noise ratio of 3 and 10, the limits of detection (LODs) and limits of quantification (LOQs) were in the range 0.14-0.27 and 0.39-0.91 ng L-1, respectively. The intra- and inter-day relative standard deviations (RSDs) were less than 9.06%. The absolute recoveries of PCBs in spiked real water samples were in the range of 75.17 to 101.20%. Additionally, reusability and batch-to-batch reproducibility of the resultant material were acceptable with RSDs less than 5.64 and 3.25%, respectively. Graphical Abstract The synthesis procedure of Fe3O4@SiO2-C16 and determination of PCBs in water sample 129 × 50 mm (300 × 300 DPI).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...