Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307804, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837887

RESUMO

RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.

2.
Nucleic Acids Res ; 52(10): 6002-6016, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38499485

RESUMO

Alternative splicing (AS) generates multiple RNA isoforms and increases the complexities of transcriptomes and proteomes. However, it remains unclear how RNA structures contribute to AS regulation. Here, we systematically search transcriptomes for secondary structures with concealed branch sites (BSs) in the alternatively spliced introns and predict thousands of them from six organisms, of which many are evolutionarily conserved. Intriguingly, a highly conserved stem-loop structure with concealed BSs is found in animal SF3B3 genes and colocalizes with a downstream poison exon (PE). Destabilization of this structure allows increased usage of the BSs and results in enhanced PE inclusion in human and Drosophila cells, leading to decreased expression of SF3B3. This structure is experimentally validated using an in-cell SHAPE-MaP assay. Through RNA interference screens of 28 RNA-binding proteins, we find that this stem-loop structure is sensitive to U2 factors. Furthermore, we find that SF3B3 also facilitates DNA repair and protects genome stability by enhancing interaction between ERCC6/CSB and arrested RNA polymerase II. Importantly, both Drosophila and human cells with the secondary structure mutated by genome editing exhibit altered DNA repair in vivo. This study provides a novel and common mechanism for AS regulation of PEs and reveals a physiological function of SF3B3 in DNA repair.


Assuntos
Processamento Alternativo , Éxons , Íntrons , Animais , Humanos , Sequência Conservada , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons/genética , Íntrons/genética , Conformação de Ácido Nucleico , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Códon sem Sentido
3.
PLoS Genet ; 19(11): e1011021, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917726

RESUMO

Small nuclear RNAs (snRNAs) are structural and functional cores of the spliceosome. In metazoan genomes, each snRNA has multiple copies/variants, up to hundreds in mammals. However, the expressions and functions of each copy/variant in one organism have not been systematically studied. Focus on U1 snRNA genes, we investigated all five copies in Drosophila melanogaster using two series of constructed strains. Analyses of transgenic flies that each have a U1 promoter-driven gfp revealed that U1:21D is the major and ubiquitously expressed copy, and the other four copies have specificities in developmental stages and tissues. Mutant strains that each have a precisely deleted copy of U1-gene exhibited various extents of defects in fly morphology or mobility, especially deletion of U1:82Eb. Interestingly, splicing was changed at limited levels in the deletion strains, while large amounts of differentially-expressed genes and alternative polyadenylation events were identified, showing preferences in the down-regulation of genes with 1-2 introns and selection of proximal sites for 3'-end polyadenylation. In vitro assays suggested that Drosophila U1 variants pulled down fewer SmD2 proteins compared to the canonical U1. This study demonstrates that all five U1-genes in Drosophila have physiological functions in development and play regulatory roles in transcription and 3'-end formation.


Assuntos
Drosophila melanogaster , RNA Nuclear Pequeno , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Splicing de RNA/genética , Drosophila/genética , Drosophila/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
4.
Nucleic Acids Res ; 51(10): 5228-5241, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070178

RESUMO

Conversely to canonical splicing, back-splicing connects the upstream 3' splice site (SS) with a downstream 5'SS and generates exonic circular RNAs (circRNAs) that are widely identified and have regulatory functions in eukaryotic gene expression. However, sex-specific back-splicing in Drosophila has not been investigated and its regulation remains unclear. Here, we performed multiple RNA analyses of a variety sex-specific Drosophila samples and identified over ten thousand circular RNAs, in which hundreds are sex-differentially and -specifically back-spliced. Intriguingly, we found that expression of SXL, an RNA-binding protein encoded by Sex-lethal (Sxl), the master Drosophila sex-determination gene that is only spliced into functional proteins in females, promoted back-splicing of many female-differential circRNAs in the male S2 cells, whereas expression of a SXL mutant (SXLRRM) did not promote those events. Using a monoclonal antibody, we further obtained the transcriptome-wide RNA-binding sites of SXL through PAR-CLIP. After splicing assay of mini-genes with mutations in the SXL-binding sites, we revealed that SXL-binding on flanking exons and introns of pre-mRNAs facilitates back-splicing, whereas SXL-binding on the circRNA exons inhibits back-splicing. This study provides strong evidence that SXL has a regulatory role in back-splicing to generate sex-specific and -differential circRNAs, as well as in the initiation of sex-determination cascade through canonical forward-splicing.


Assuntos
Proteínas de Drosophila , RNA Circular , Proteínas de Ligação a RNA , Animais , Feminino , Masculino , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA/genética , RNA/metabolismo , Splicing de RNA/genética , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Iran J Kidney Dis ; 1(1): 1-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739484

RESUMO

INTRODUCTION: The aim of the current meta-analysis was to assess the predictive value of blood fibroblast growth factor 23 (FGF-23) for acute kidney injury (AKI) in adult patients. METHODS: We retrieved relative publications from electronic databases including the Cochrane Library, PubMed, Google Scholar, Scopus, web of science, and Wanfang Data from their inception to Aug 2022. RESULTS: This meta-analysis study included seven prospective cohort trials comprising 1,655 adult patients. The overall pooled area under the receiver operating characteristic curve (AUC) from seven studies was 0.83 (95% CI: 0.80 to 0.86). Significant heterogeneity was identified (Q = 9.82, P = .004, I2 = 80). Pooled sensitivity and specificity were 0.75 (95% CI: 0.59 to 0.87) and 0.77 (95% CI: 0.65 to 0.87), respectively. Pooled positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 3.3 (95% CI: 1.8 to 6.3), 0.32 (95% CI: 0.16 to 0.63), and 10 (95% CI: 3 to 38); respectively. Moreover, our sensitivity analysis showed that when a trial from Asia was excluded, the predictive value of FGF-23 was declined. CONCLUSION: Our results of meta-analysis of seven prospective cohort trials suggested that blood FGF-23 is a candidate indicator for the prediction of AKI in adult patients. Results of future large and well-designed clinical trials are still needed.  DOI: 10.52547/ijkd.7189.


Assuntos
Injúria Renal Aguda , Fator de Crescimento de Fibroblastos 23 , Adulto , Humanos , Injúria Renal Aguda/diagnóstico , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade
6.
Wiley Interdiscip Rev RNA ; 14(1): e1761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056453

RESUMO

Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.


Assuntos
Splicing de RNA , Spliceossomos , Animais , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Íntrons , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA/metabolismo
7.
PLoS Genet ; 17(11): e1009861, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723968

RESUMO

SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and-H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Íntrons , Mutação , Animais , Sistemas CRISPR-Cas , Drosophila/imunologia
8.
Front Genet ; 12: 642602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859668

RESUMO

Interrupted exons in the pre-mRNA transcripts are ligated together through RNA splicing, which plays a critical role in the regulation of gene expression. Exons with a length ≤ 30 nt are defined as microexons that are unique in identification. However, microexons, especially those shorter than 8 nt, have not been well studied in many organisms due to difficulties in mapping short segments from sequencing reads. Here, we analyzed mRNA-seq data from a variety of Drosophila samples with a newly developed bioinformatic tool, ce-TopHat. In addition to the Flybase annotated, 465 new microexons were identified. Differentially alternatively spliced (AS) microexons were investigated between the Drosophila tissues (head, body, and gonad) and genders. Most of the AS microexons were found in the head and two AS microexons were identified in the sex-determination pathway gene fruitless.

9.
Nat Commun ; 11(1): 5608, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154379

RESUMO

The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.


Assuntos
Proteínas de Drosophila/genética , Íntrons , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Spliceossomos/patologia , Animais , Modelos Animais de Doenças , Drosophila , Atrofia Muscular Espinal/patologia , Mutação , Fenótipo , Sítios de Splice de RNA , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Spliceossomos/genética
10.
Nucleic Acids Res ; 48(11): 5799-5813, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32399566

RESUMO

Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Alelos , Genes Fúngicos/genética , Genoma Fúngico/genética , Mutação , Fenótipo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
11.
RNA Biol ; 16(6): 809-820, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30836863

RESUMO

Doublesex is highly conserved and sex-specifically spliced in insect sex-determination pathways, and its alternative splicing (AS) is regulated by Transformer, an exonic splicing activator, in the model system of Drosophila melanogaster. However, due to the lack of a transformer gene, AS regulation of doublesex remains unclear in Lepidoptera, which contain the economically important silkworm Bombyx mori and thousands of agricultural pests. Here, we use yeast three-hybrid system to screen for RNA-binding proteins that recognize sex-specific exons 3 and 4 of silkworm doublesex (Bm-dsx); this approach identified BxRBP1/Lark binding to the exon 3, and BxRBP2/TBPH and BxRBP3/Aret binding to the exon 4. Investigation of tissues shows that BxRBP1 and BxRBP2 have no sex specificity, but BxRBP3 has - three of its four isoforms are expressed with a sex-bias. Using novel sex-specific silkworm cell lines, we find that BxRBP1 and BxRBP3 directly interact with each other, and cooperatively function as splicing repressors. Over-expression of BxRBP1 and BxRBP3 isoforms efficiently inhibits splicing of the exons 3 and 4 in the female-specific cells and generates the male-specific isoform of Bm-dsx. We also demonstrate that the sex-determination upstream gene Masc regulates alternatively transcribed BxRBP3 isoforms. Thus, we identify a new regulatory mechanism of doublesex AS in the silkworm, revealing an evolutionary divergence in insect sex-determination.


Assuntos
Processamento Alternativo , Bombyx/genética , Proteínas de Ligação a DNA/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Bombyx/metabolismo , Proteínas de Ligação a DNA/metabolismo , Éxons , Feminino , Genes de Insetos , Proteínas de Insetos/química , Masculino , Sinais de Localização Nuclear , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Caracteres Sexuais , Transcrição Gênica
12.
Nucleic Acids Res ; 47(6): 3142-3157, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649456

RESUMO

In Drosophila, dosage compensation globally upregulates the expression of genes located on male single X-chromosome. Maleless (MLE) helicase plays an essential role to incorporate the roX lncRNA into the dosage compensation complex (MSL-DCC), and such function is essentially dependent on its dsRNA-binding domains (dsRBDs). Here, we report a 2.90Å crystal structure of tandem dsRBDs of MLE in complex with a 55mer stem-loop of roX2 (R2H1). MLE dsRBDs bind to R2H1 cooperatively and interact with two successive minor grooves and a major groove of R2H1, respectively. The recognition of R2H1 by MLE dsRBDs involves both shape- and sequence-specificity. Moreover, dsRBD2 displays a stronger RNA affinity than dsRBD1, and mutations of key residues in either MLE dsRBD remarkably reduce their affinities for roX2 both in vitro and in vivo. In Drosophila, the structure-based mle mutations generated using the CRISPR/Cas9 system, are partially male-lethal and indicate the inter-regulation among the components of the MSL-DCC at multiple levels. Hence, our research provides structural insights into the interactions between MLE dsRBDs and R2H1 and facilitates a deeper understanding of the mechanism by which MLE tandem dsRBDs play an indispensable role in specific recognition of roX and the assembly of the MSL-DCC in Drosophila dosage compensation.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/química , RNA de Cadeia Dupla/genética , Fatores de Transcrição/química , Animais , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , RNA de Cadeia Dupla/química , Fatores de Transcrição/genética , Cromossomo X/genética
13.
J Mol Cell Biol ; 11(2): 170-181, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750417

RESUMO

Serine/arginine (SR)-rich proteins are critical for the regulation of alternative splicing (AS), which generates multiple mRNA isoforms from one gene and provides protein diversity for cell differentiation and tissue development. Genetic evidence suggests that Drosophila genital-specific overexpression of SR-related nuclear matrix protein of 160 kDa (SRm160), an SR protein with a PWI RNA-binding motif, causes defective development only in male flies and results in abnormal male genital structures and abnormal testis. However, the molecular characterization of SRm160 is limited. Using the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) method in two sex-specific embryonic cell lines, S2 from the male and Kc from the female, we first identified the genome-wide RNA-binding characteristics of SRm160, which preferred binding to the exonic tri-nucleotide repeats GCA and AAC. We then validated this binding through both in vitro gel-shift assay and in vivo splicing of minigenes and found that SRm160 level affects AS of many transcripts. Furthermore, we identified 492 differential binding sites (DBS) of SRm160 varying between the two sex-specific cell lines. Among these DBS-containing genes, splicing factors were highly enriched, including transformer, a key regulator in the sex determination cascade. Analyses of fly mutants demonstrated that the SRm160 level affects AS isoforms of transformer. These findings shed crucial light on SRm160's RNA-binding specificity and regulation of AS in Drosophila sex determination and development.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/genética , Diferenciação Sexual/genética , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Drosophila/genética , Drosophila/metabolismo , Isoformas de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
J Ethnopharmacol ; 228: 123-131, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30266421

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang huanwu decoction (BYHWD) is a classic recipe in traditional Chinese medicine (TCM) to supplement Qi and activate blood. It has been used to recover the neural function after the injury of central nervous system for hundreds of years in China. AIM OF THE STUDY: This study investigated whether Buyang huanwu decoction (BYHWD) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation had synergistic effect on neuroprotection of red nucleus neurons after spinal cord injury (SCI). MATERIALS AND METHODS: Rubrospinal tract (RST) transection model was established and BMSCs were collected. The forelimb locomotor function was recorded using inclined plate test and spontaneous vertical exploration. cAMP level in red nucleus was detected with Enzyme-linked immunosorbent assay (ELISA). Morphology and number of red nucleus neurons was observed using Nissl's staining. Expression of cAMP-response element binding protein (CREB), ras homolog gene family member A (RhoA) and nerve growth factor (NGF) in red nucleus was detected using immunohistochemistry, qRT-PCR and Western-blotting. RESULTS: The combination of BYHWD and BMSCs transplantation could improve the forelimb locomotor function significantly and give the red nucleus somas a better protection. Meanwhile, cAMP level, CREB and NGF increased, while RhoA decreased remarkably in the BYHWD+BMSCs group. CONCLUSIONS: BYHWD combined with BMSCs transplantation had synergistic effect on neuroprotection of red nucleus neurons after SCI; the mechanism may be related to up-regulating cAMP level, activating the cAMP/CREB/RhoA signaling pathway, and promoting expression of NGF.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Células-Tronco Mesenquimais , Neurônios/fisiologia , Núcleo Rubro/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Axotomia , Masculino , Transplante de Células-Tronco Mesenquimais , Fitoterapia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
15.
J Biol Chem ; 293(16): 6011-6021, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29500196

RESUMO

More than 70% of all agricultural pests are insects in the order Lepidoptera, which, unlike other related insect orders, are not very sensitive to RNAi, limiting genetic studies of this insect group. However, the reason for this distinct lepidopteran characteristic is unknown. Previously, using transcriptome analysis of the Asian corn borer Ostrinia furnacalis, we identified a gene, termed up56, that is up-regulated in response to dsRNA. Here we report that this Lepidoptera-specific gene encodes a nuclease that contributes to RNAi insensitivity in this insect order. Its identity was experimentally validated, and sequence analysis indicated that up56 encodes a previously uncharacterized protein with homologous sequences in seven other lepidopteran species. Its computationally predicted three-dimensional structure revealed a high structural similarity to human exonuclease I. Exposure to dsRNA in O. furnacalis strongly up-regulated this gene's expression, and the protein could digest single-stranded RNA (ssRNA), dsRNA, and dsDNA both in vitro and in vivo Of note, we found that this up-regulation of up56 expression is faster than that of the gene encoding the key RNAi-associated nuclease Dicer. up56 knockdown in O. furnacalis significantly enhanced RNAi efficiency. Moreover, up56 overexpression in Drosophila melanogaster suppressed RNAi efficiency. Finally, up56 knockdown significantly increased the amount and diversity of small RNAs. Therefore, we renamed this protein RNAi efficiency-related nuclease (REase). In conclusion, we propose that REase may explain why lepidopterans are refractory to RNAi and that it represents a target for further research of RNAi efficiency in this insect order.


Assuntos
Desoxirribonucleases/genética , Proteínas de Insetos/genética , Lepidópteros/genética , Interferência de RNA , Ribonucleases/genética , Sequência de Aminoácidos , Animais , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lepidópteros/química , Lepidópteros/metabolismo , Modelos Moleculares , Filogenia , Estabilidade de RNA , Ribonucleases/química , Ribonucleases/metabolismo , Alinhamento de Sequência , Transcriptoma
16.
Genes Dev ; 29(7): 760-71, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838544

RESUMO

Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.


Assuntos
Drosophila/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Trans-Splicing/genética , Motivos de Aminoácidos , Animais , Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Íntrons/genética , Proteínas de Ligação a RNA/genética
17.
Genetics ; 197(4): 1251-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907259

RESUMO

SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos.


Assuntos
Apoptose/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , Alelos , Sequência de Aminoácidos , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Olho/embriologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Loci Gênicos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Organogênese/genética , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo
18.
Nucleic Acids Res ; 41(8): 4660-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23462954

RESUMO

Fidelity and efficiency of pre-mRNA splicing are critical for generating functional mRNAs, but how such accuracy in 5' splice site (SS) selection is attained is not fully clear. Through a series of yeast genetic screens, we isolated alleles of prp28 that improve splicing of suboptimal 5'SS substrates, demonstrating that WT-Prp28p proofreads, and consequently rejects, poor 5'SS. Prp28p is thought to facilitate the disruption of 5'SS-U1 snRNA pairing to allow for 5'SS-U6 snRNA pairing in the catalytic spliceosome; unexpectedly, 5'SS proofreading by Prp28p is dependent on competition with the stability of the 5'SS:U6 duplex, but not the 5'SS:U1 duplex. E404K, the strongest prp28 allele containing a mutation located in the linker region between adenosine triphosphatase (ATPase) subdomains, exhibited lower RNA-binding activity and enhanced splicing of suboptimal substrates before first-step catalysis, suggesting that decreased Prp28p activity allows longer time for suboptimal 5'SS substrates to pair with U6 snRNA and thereby reduces splicing fidelity. Residue E404 is critical for providing high splicing activity, demonstrated here in both yeast and Drosophila cells. Thus, the subdomain linker in Prp28p plays important roles both in splicing efficiency across species and in proofreading of 5'SS.


Assuntos
RNA Helicases DEAD-box/genética , Sítios de Splice de RNA , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Alelos , Animais , Linhagem Celular , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Drosophila/genética , Mutação , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...