Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(38): 13236-13245, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34485999

RESUMO

Two-dimensional (2D) π-conjugated conductive metal-organic frameworks (cMOFs, 2DπcMOF) with modulated channel sizes and a broad conductivity range have been reported in the last decade. In contrast, the corresponding comparative studies on their effects on chemiresistive sensing performances, which measure the resistive response toward external chemical stimuli, have not yet been reported. In this work, we sought to explore the structure-performance relationships of honeycomb-like 2D π-conjugated cMOF chemiresistive gas sensors with channel sizes less than 2 nm (the mass transport issue) and broad conductivity in the range from ∼10-8 S cm-1 to 1 S cm-1 (the charge transport issue). As a result, we found that the cMOF with a lower conductivity facilitates the much more sensitive response toward the charge transfer of the adsorbed gases (relative increases in resistance: R = 63.5% toward 100 ppm of NH3 for the as prepared Cu-THQ sensor with the conductivity of ∼10-8 S cm-1). Interestingly, the cMOF with a medium channel size (Cu-THHP-THQ) exhibited the fastest response speed in sensing, although it contains H2en2+ as neutralizing counterions in the channels. From the evaluation of the pore size distribution, it is found that the overall porosity (meso- & micro-pores) of cMOFs, rather than the pore size of the honeycomb structure, would determine their sensing speed. When comparing the performance of two different morphologies of nanorods (NRs) and nanosheets (NSs), NRs showed a slower response and extended recovery time, which can be ascribed to the slower gas diffusion in the more extended 1D channel. Altogether, our results demonstrate the first systematic studies on the effect of various structural parameters on the chemiresistive sensor performance of cMOFs.

2.
ACS Appl Mater Interfaces ; 8(6): 3765-75, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26799981

RESUMO

Rational design and construction of Z-scheme photocatalysts has received much attention in the field of CO2 reduction because of its great potential to solve the current energy and environmental crises. In this study, a series of Z-scheme BiOI/g-C3N4 photocatalysts are synthesized and their photocatalytic performance for CO2 reduction to produce CO, H2 and/or CH4 is evaluated under visible light irradiation (λ > 400 nm). The results show that the as-synthesized composites exhibit more highly efficient photocatalytic activity than pure g-C3N4 and BiOI and that the product yields change remarkably depending on the reaction conditions such as irradiation light wavelength. Emphasis is placed on identifying how the charge transfers across the heterojunctions and an indirect Z-scheme charge transfer mechanism is verified by detecting the intermediate I3(-) ions. The reaction mechanism is further proposed based on the detection of the intermediate (•)OH and H2O2. This work may be useful for rationally designing of new types of Z-scheme photocatalyst and provide some illuminating insights into the Z-scheme transfer mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...