Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(6): 3733-3746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35895252

RESUMO

Lipopeptides have been the subject of great interest as vehicles for drug delivery, but the potential usage of their biological composites has not been extensively studied. Here, the extracellular lipopeptide composite (ELC) of a lipopeptide-producing bacterium was extracted and examined to deliver doxorubicin (DOX) as a cationic drug. MALDI-TOF mass spectrometry analysis on the lipopeptide moiety of ELC revealed that this hydrogel consists of 13 lipopeptide isomers. Furthermore, scanning electron microscope (SEM) studies showed that the permeability of ELC in acidic pH was significantly more than basic condition. In this study, 81% of DOX was successfully entrapped in ELC and the release of the drug was measured in acidic, neutral, and basic conditions. The results indicated that the release profile of the drug in acidic pH was about 10 and 16 fold more than neutral and basic conditions, respectively. Besides, the toxicity of DOX-conjugated ELC against PBMC cells was more than free DOX, suggesting the adequate drug release from ELC. Since the surrounding environment of tumor cells is often acidic, this pH-sensitive carrier could be a candidate for cancer therapy to improve the exposure of tumor cells to the drugs.


Assuntos
Lipopeptídeos , Nanopartículas , Hidrogéis , Leucócitos Mononucleares , Concentração de Íons de Hidrogênio , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Liberação Controlada de Fármacos
2.
World J Microbiol Biotechnol ; 37(6): 97, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33969441

RESUMO

Bacterial lipopeptides have become a research focus of many studies owing to their industrial and pharmaceutical importance. Although such studies focused on researching purification procedures and qualitative analysis, much remains to be explored and developed to improve the current methods. To enable thorough studies of lipopeptides, this paper describes a new method for purification and characterization of in-gel anionic lipopeptides. Specifically, lipopeptides attributed to the anti-staphylococcal activity of Bacillus mojavensis HF were separated using SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and subsequently characterized using mass spectrometry. Lipopeptide band obtained by gel electrophoresis was first visualized using three different staining methods. Next, the lipopeptide isomers were efficiently recovered from the gel band and structural characterization of the extracted lipopeptides was carried out by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). MS analysis revealed that Bacillus mojavensis HF produced three types of lipopeptides including surfactin, fengycin, and kurstakin. 14 clusters of ion peaks were identified as fengycin A with fatty acid of C15-C17, fengycin B (C16, C17), surfactin (C13-C16), and kurstakin (C9-C12). Moreover, tandem mass spectrometric analysis (MS/MS) revealed the sequences of fengycin A and surfactin. In this study, we identified a high variety and number of surfactin and fengycin isomers, which previous reports lacked. To the best of our knowledge, we are the first to report the presence of kurstakin in Bacillus mojavensis species. Finally, we demonstrated that our gel-based study of lipopeptides allowed for a precise and reproducible investigation of these molecules.


Assuntos
Antibacterianos/análise , Bacillus/metabolismo , Lipopeptídeos/análise , Antibacterianos/química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
3.
J Biomed Mater Res A ; 104(9): 2280-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27119433

RESUMO

This study focuses on the potential of diphenylalanine self-assembled peptide nanotubes (FF Nts) for delivery of flufenamic acid (FA) from metal implants. Self-assembly of FF Nts was studied in solution and on surfaces of glass, silicone and gold substrates. FA was loaded inside the shell of FF Nts and subsequently FF/FA Nts were attached to gold surfaces. The substrate were characterized by Field Emission Scanning Electron Microscopy (FESEM), fluorescence microscopy, confocal microscopy, and UV-vis spectroscopy. Release of FA from FF Nts were investigated by immersing coated metal substrates in phosphate-buffered saline for 12 days. Self-assembly of FF in water and solvent resulted in formation of nanotubes, which efficiently loaded 98% of FA with concentration of 20 µg/mL. FESEM images confirmed successful attachment of FF/FA Nts to functionalized gold substrates. In vitro release studies indicated using FF Nts has prolonged the release rate of FA for several days. Biocompatibility studied confirmed more than 50% of the cells were alive in concentration of 250-1000 µg/mL of FF Nts thus suggesting the potential of peptide based self-assemble nanostructures as an alternate system for polymer coating in drugs eluting stents. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2280-2290, 2016.


Assuntos
Stents Farmacológicos , Ácido Flufenâmico , Teste de Materiais , Nanotubos de Peptídeos/química , Fenilalanina/análogos & derivados , Dipeptídeos , Ácido Flufenâmico/química , Ácido Flufenâmico/farmacocinética , Ácido Flufenâmico/farmacologia , Humanos , Células MCF-7 , Fenilalanina/química
4.
Jundishapur J Microbiol ; 8(3): e14965, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25834716

RESUMO

BACKGROUND: Halomethanes are toxic and carcinogenic chemicals, which are widely used in industry. Also they can be formed during water disinfection by chlorine. Biodegradation by methylotrophs is the most important way to remove these pollutants from the environment. OBJECTIVES: This study aimed to represent a simple and rapid method for quantitative study of halomethanes utilizing bacteria in drinking water and also a method to facilitate the biodegradation of these compounds in the environment compared to cometabolism. MATERIALS AND METHODS: Enumeration of chlorinated methane utilizing bacteria in drinking water was carried out by most probable number (MPN) method in two steps. First, the presence and the number of methylotroph bacteria were confirmed on methanol-containing medium. Then, utilization of dichloromethane was determined by measuring the released chloride after the addition of 0.04 mol/L of it to the growth medium. Also, the effect of nanosilver particles on biodegradation of multiple chlorinated methanes was studied by bacterial growth on Bushnell-Haas Broth containing chloroform (trichloromethane) that was treated with 0.2 ppm nanosilver. RESULTS: Most probable number of methylotrophs and chlorinated methane utilizing bacteria in tested drinking water were 10 and 4 MPN Index/L, respectively. Chloroform treatment by nanosilver leads to dechlorination and the production of formaldehyde. The highest growth of bacteria and formic acid production were observed in the tubes containing 1% chloroform treated with nanosilver. CONCLUSIONS: By combining the two tests, a rapid approach to estimation of most probable number of chlorinated methane utilizing bacteria is introduced. Treatment by nanosilver particles was resulted in the easier and faster biodegradation of chloroform by bacteria. Thus, degradation of these chlorinated compounds is more efficient compared to cometabolism.

5.
World J Microbiol Biotechnol ; 30(2): 585-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24002576

RESUMO

Bacteriorhodopsin (bR) is a transmembrane protein deposited in the purple membrane of Halobacterium salinarum which absorbs energy from photons to create a photo-induced proton gradient across the membrane. A bR molecule can be considered as a natural solar device transforming light into other types of energy and therefore is of interest for a wide range of applications including two and three-dimensional memory storage, optical data processing, artificial cells, holographic media, the artificial retina and photo sensor devices. H. salinarum is a slow-growing, halophilic Archaea present in red salt waters. The present study introduces a novel bR-like pigment from a new strain of Pseudomonas halophila (with registered accession number KC959570 in the NCBI databank) which has a very significant degree of light-dependent activity. This is the first report on the presence of functional bR-like protein in the Pseudomonas family. The isolate is a fast-growing, halophilic bacterium and is comparable with other photoactive protein producer microorganisms. Also, in the present study a novel isolation method for screen light-stimulating protein producing microorganisms is introduced. For this purpose 2,3,5-triphenyltetrazolium chloride (TTC) was employed for the first time as an artificial hydrogen acceptor in the proton-transfer processes. The TTC test is an easy and susceptible method for estimating hydrogen production during the proton transport process. This is the first report of the use of TTC for photo activity measurement and selection of bacteria containing light dependent proteins.


Assuntos
Bacteriorodopsinas/análise , Pseudomonas/química , Pseudomonas/isolamento & purificação , Técnicas Bacteriológicas/métodos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Programas de Rastreamento/métodos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...