Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 202: 105938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879329

RESUMO

The excessive and indiscriminate use of synthetic insecticides has led to environmental pollution, wildlife destruction, and adverse effects on human health, while simultaneously giving rise to resistance in insect pest populations. This adaptive trait is expressed through various mechanisms, such as changes in the cuticle, heightened activities of detoxifying enzymes, and alterations in the sites of action that reduce their affinity for insecticides. In this context, we associate variation in toxicological response with genomic variation, to identify genetic polymorphisms underlying the different steps of the insect (genotype)-response (phenotype)-insecticide (environment) interaction. Under this framework, our objective was to investigate the genetic factors involved in the toxicological response of D. melanogaster lines when exposed to citronellal and eucalyptol vapors (monoterpenes of plant origin). We quantified KT50 in adult males, representing the time necessary for half of the exposed individuals to be turned upside down (unable to walk or fly). Since the genomes of all lines used are completely sequenced, we perform a Genome Wide Association Study to analyze the genetic underpinnings of the toxicological response. Our investigation enabled the identification of 656 genetic polymorphisms and 316 candidate genes responsible for the overall phenotypic variation. Among these, 162 candidate genes (77.1%) exhibited specificity to citronellal, 45 (21.4%) were specific to eucalyptol, and 3 candidate genes (1.5%) namely CG34345, robo2, and Ac13E, were implicated in the variation for both monoterpenes. These suggest a widespread adaptability in the response to insecticides, encompassing genes influenced by monoterpenes and those orchestrating resistance to the toxicity of these compounds.


Assuntos
Monoterpenos Acíclicos , Drosophila melanogaster , Eucaliptol , Inseticidas , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Eucaliptol/toxicidade , Inseticidas/toxicidade , Masculino , Monoterpenos Acíclicos/toxicidade , Estudo de Associação Genômica Ampla , Monoterpenos/toxicidade , Aldeídos/toxicidade , Resistência a Inseticidas/genética
2.
J Evol Biol ; 36(1): 251-263, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357966

RESUMO

In phytophagous insects, oviposition behaviour is an important component of habitat selection and, given the multiplicity of genetic and environmental factors affecting its expression, is defined as a complex character resulting from the sum of interdependent traits. Here, we study two components of egg-laying behaviour: oviposition acceptance (OA) and oviposition preference (OP) in Drosophila melanogaster using three natural fruits as resources (grape, tomato and orange) by means of no-choice and two-choice experiments, respectively. This experimental design allowed us to show that the results obtained in two-choice assays (OP) cannot be accounted for by those resulting from no-choice assays (OA). Since the genomes of all lines used are completely sequenced, we perform a genome-wide association study to identify and characterize the genetic underpinnings of these oviposition behaviour traits. The analyses revealed different candidate genes affecting natural genetic variation of both OA and OP traits. Moreover, our results suggest behavioural and genetic decoupling between OA and OP and that egg-laying behaviour is plastic and context-dependent. Such independence in the genetic architectures of OA and OP variation may influence different aspects of oviposition behaviour, including plasticity, canalization, host shift and maintenance of genetic variability, which contributes to the adoption of adaptive strategies during habitat selection.


Assuntos
Drosophila melanogaster , Frutas , Animais , Feminino , Drosophila melanogaster/genética , Frutas/genética , Oviposição/genética , Estudo de Associação Genômica Ampla
3.
BMC Dev Biol ; 11: 32, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21635778

RESUMO

BACKGROUND: The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small, additive effects. In this study, we analyzed wing shape in males and females from 191 lines of D. melanogaster, homozygous for a single P-element insertion, using geometric morphometrics techniques. The analysis allowed us to identify known and novel candidate genes that may contribute to the expression of wing shape in each sex separately and to compare them to candidate genes affecting wing size which have been identified previously using the same lines. RESULTS: Our results indicate that more than 63% of induced mutations affected wing shape in one or both sexes, although only 33% showed significant differences in both males and females. The joint analysis of wing size and shape revealed that only 19% of the P-element insertions caused coincident effects on both components of wing form in one or both sexes. Further morphometrical analyses revealed that the intersection between veins showed the smallest displacements in the proximal region of the wing. Finally, we observed that mutations causing general deformations were more common than expected in both sexes whereas the opposite occurred with those generating local changes. For most of the 94 candidate genes identified, this seems to be the first record relating them with wing shape variation. CONCLUSIONS: Our results support the idea that the genetic architecture of wing shape is complex with many different genes contributing to the trait in a sexually dimorphic manner. This polygenic basis, which is relatively independent from that of wing size, is composed of genes generally involved in development and/or metabolic functions, especially related to the regulation of different cellular processes such as motility, adhesion, communication and signal transduction. This study suggests that understanding the genetic basis of wing shape requires merging the regulation of vein patterning by signalling pathways with processes that occur during wing development at the cellular level.


Assuntos
Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Morfogênese/fisiologia , Caracteres Sexuais , Animais , Pesos e Medidas Corporais , Drosophila melanogaster/fisiologia , Feminino , Genótipo , Masculino , Mutação , Fenótipo , Asas de Animais/anormalidades , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
4.
J Insect Sci ; 10: 181, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21062144

RESUMO

The inversion polymorphisms of the cactophilic Drosophila buzzatti Patterson and Wheeler (Diptera: Drosophilidae) were studied in new areas of its distribution in Argentina. A total of thirty-eight natural populations, including 29 from previous studies, were analyzed using multiple regression analyses. The results showed that about 23% of total variation was accounted for by a multiple regression model in which only altitude contributed significantly to population variation, despite the fact that latitude and longitude were also included in the model. Also, inversion frequencies exhibited significant associations with mean annual temperature, precipitation, and atmospheric pressure. In addition, expected heterozygosity exhibited a negative association with temperature and precipitation and a positive association with atmospheric pressure. The close similarity of the patterns detected in this larger dataset to previous reports is an indication of the stability of the clines. Also, the concurrence of the clines detected in Argentina with those reported for colonizing populations of Australia suggests the involvement of natural selection as the main mechanism shaping inversion frequencies in D. buzzatii.


Assuntos
Adaptação Biológica/genética , Altitude , Inversão Cromossômica/genética , Clima , Drosophila/genética , Adaptação Biológica/fisiologia , Animais , Argentina , Análise Citogenética , Geografia , Análise de Regressão , Seleção Genética
5.
Genetica ; 133(1): 1-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17647081

RESUMO

In this work we investigate the effect of interspecific hybridization on wing morphology using geometric morphometrics in the cactophilic sibling species D. buzzatii and D. koepferae. Wing morphology in F1 hybrids exhibited an important degree of phenotypic plasticity and differs significantly from both parental species. However, the pattern of morphological variation between hybrids and the parental strains varied between wing size and wing shape, across rearing media, sexes, and crosses, suggesting a complex genetic architecture underlying divergence in wing morphology. Even though there was significant fluctuating asymmetry for both, wing size and shape in F1 hybrids and both parental species, there was no evidence of an increased degree of fluctuating asymmetry in hybrids as compared to parental species. These results are interpreted in terms of developmental stability as a function of a balance between levels of heterozygosity and the disruption of coadaptation as an indirect consequence of genomic divergence.


Assuntos
Drosophila/anatomia & histologia , Drosophila/genética , Hibridização Genética , Asas de Animais/anatomia & histologia , Análise de Variância , Animais , Cactaceae , Drosophila/classificação , Feminino , Genômica , Masculino , Tamanho do Órgão/genética
6.
BMC Evol Biol ; 7: 77, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17504529

RESUMO

BACKGROUND: The rapid evolution of genital morphology is a fascinating feature that accompanies many speciation events. However, the underlying patterns and explanatory processes remain to be settled. In this work we investigate the patterns of intraspecific variation and interspecific divergence in male genitalic morphology (size and shape) in the cactophilic sibling species Drosophila buzzatii and D. koepferae. Genital morphology in interspecific hybrids was examined and compared to the corresponding parental lines. RESULTS: Despite of being siblings, D. buzzatii and D. koepferae showed contrasting patterns of genital morphological variation. Though genitalic size and shape variation have a significant genetic component in both species, shape varied across host cacti only in D. buzzatii. Such plastic expression of genital shape is the first evidence of the effect of rearing substrate on genitalic morphology in Drosophila. Hybrid genital morphology was not intermediate between parental species and the morphological resemblance to parental strains was cross-dependent. CONCLUSION: Our results suggest the evolution of different developmental networks after interspecific divergence and the existence of a complex genetic architecture, involving genetic factors with major effects affecting genital morphology.


Assuntos
Evolução Biológica , Drosophila/genética , Genitália Masculina/crescimento & desenvolvimento , Análise de Variância , Animais , Cruzamentos Genéticos , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Tamanho do Órgão , Especificidade da Espécie
7.
Genetics ; 166(4): 1807-23, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15126400

RESUMO

The ability to withstand periods of scarce food resources is an important fitness trait. Starvation resistance is a quantitative trait controlled by multiple interacting genes and exhibits considerable genetic variation in natural populations. This genetic variation could be maintained in the face of strong selection due to a trade-off in resource allocation between reproductive activity and individual survival. Knowledge of the genes affecting starvation tolerance and the subset of genes that affect variation in starvation resistance in natural populations would enable us to evaluate this hypothesis from a quantitative genetic perspective. We screened 933 co-isogenic P-element insertion lines to identify candidate genes affecting starvation tolerance. A total of 383 P-element insertions induced highly significant and often sex-specific mutational variance in starvation resistance. We also used deficiency complementation mapping followed by complementation to mutations to identify 12 genes contributing to variation in starvation resistance between two wild-type strains. The genes we identified are involved in oogenesis, metabolism, and feeding behaviors, indicating a possible link to reproduction and survival. However, we also found genes with cell fate specification and cell proliferation phenotypes, which implies that resource allocation during development and at the cellular level may also influence the phenotypic response to starvation.


Assuntos
Drosophila melanogaster/genética , Genes de Insetos/fisiologia , Locos de Características Quantitativas , Inanição/genética , Análise de Variância , Animais , Cruzamentos Genéticos , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/fisiologia , Genes de Insetos/genética , Teste de Complementação Genética , Variação Genética , Mutação/genética
8.
Evolution ; 53(2): 612-620, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28565408

RESUMO

In this study we present the results of an analysis of differential longevity associated with Drosophila buzzatii second chromosome inversion karyotypes based on the assessment of more than 1000 individuals collected in a natural population. Comparisons of inversion frequencies between emerged and bait-collected flies showed not only that inversion arrangements were associated with differential longevity, but also that selection was sex specific. Because each individual fly was scored for thorax length and karyotype, we were able to show that longevity selection favoring larger flies coupled with the average effect of inversions on thorax length can account for the change of inversion frequencies due to longevity in females. The observed genotypic-by-sex interaction could be an important mechanism involved in the maintenance of the polymorphism. Arrangement 2Jz3 , which was shown to impaired fecundity in two independent previous studies, exhibited a positive effect on longevity. This pattern of negative pleiotropy may be another plausible mechanism accounting for the maintenance of the polymorphism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...