Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 242: 116038, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428367

RESUMO

In the pharmaceutical industry, the unexpected appearance of crystalline forms could impact the therapeutic efficacy of an Active Pharmaceutical Ingredient (API). For quality control, a thorough qualitative and quantitative monitoring of pharmaceutical solid forms is essential to ensure the detection and the quantification of crystalline forms, wither different or with the same chemical composition (polymorphs) at a low detection level. The purpose of this paper was to review and highlight the importance of choosing adequate solid-state techniques for detection and quantification APIs that present polymorphism - based on limits of detection (LOD) and quantification (LOQ), pharmacopeias specifications, international guidelines and studies reported in the literature. To this study, the powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Infrared and Raman spectroscopies and solid-state nuclear magnetic resonance (NMR) were the solid-state techniques analyzed. Additionally, the Argentine, Brazilian, British, European, International, Japanese, Mexican and the United States of America pharmacopeias were reviewed. Based on the analysis performed, the advantages and disadvantages of these techniques, as well as the LOD and LOQ values of APIs were reported. In comparison to these solid-state techniques, reference material used for identification analyses should be previously identified with the corresponding polymorph. Without this previous procedure, the patterns, the spectra, and DSC curves of the reference material can only be used to confirm the mixture of solid forms, not being able to specify which polymorphs are contained in the sample. A major advantage of PXRD is the use of the calculated diffraction patterns obtained from the Crystallographic Information Frameworks (CIFs) files which could be used as a reference pattern without any other information, assistance technique, or physical standards. Regarding the quantification aspect, different pharmacopeias suggest various methods such as the PXRD combining with Rietveld method, which can be used to obtain lower LOD values for minority phases in the mixture of different substances without the need for a calibration curve. Raman spectroscopy can detect polymorphs in small particles and solid-state NMR spectroscopy is a powerful technique for quantification not only crystalline but also crystalline-amorphous mixtures. Finally, this review intends to be a useful tool to control, with efficiency and accuracy, the polymorphism of APIs in pharmaceutical compounds.


Assuntos
Indústria Farmacêutica , Limite de Detecção , Difração de Raios X , Preparações Farmacêuticas , Brasil , Varredura Diferencial de Calorimetria
2.
Int J Pharm ; 650: 123721, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110011

RESUMO

Mebendazole (MBZ) is a broad-spectrum active pharmaceutical ingredient (API) indicated for treating parasitosis, and it has three solid-state forms, A, B, and C. These solid forms exhibit significant differences in dissolution properties, which cause considerable changes in the therapeutic effect. When at least 30 % of Form A is present in the formulation, it has a similar effect to the placebo. The aim of this study was to develop a reliable quantitative method for MBZ (Forms A and C) suspensions that allowed to study the solid-state stability and the kinetics of the solid-state transformation of MBZ suspensions under the recommended pharmaceutical industry conditions. One method was developed to carry out the drying process and the other one to quantify Forms A and C of MBZ suspensions; both were evaluated. For the stability study, samples were prepared with different starting reference concentrations of Form A and stored from 1 to 24 months under long-term stability conditions (30 ± 2 °C and 75 ± 5 % RH) and from 1 to 6 months under accelerated stability conditions (40 ± 2 °C and 75 ± 5 % RH). Data collection was performed by powder X-ray diffraction (PXRD). The Rietveld method (RM) and Topas's program were used to solid form quantification. Avrami's equation was used to determine the kinetic parameters. The results showed that the combination of the drying process and solid form quantification developed method for suspension was a very accurate methodology for solid-state stability studies. Furthermore, in long-term and accelerated solid-state conditions, suspension with an initial value of 1 % of Form A were sufficient to cause a solid-state transformation (Form C to A) greater than 30 % in the first and second months, with a complete transformation in nine and six months respectively. These results demonstrate that suspensions show complete solid-state transformation (Form C to A) in a shorter time than the product's shelf life (∼2 years). In this work, a reliable methodology was developed to quantify MBZ (Forms A and C) suspensions. This methodology could be used to control the different solid forms for MBZ and other APIs to avoid solid-state transformation problems.


Assuntos
Mebendazol , Difração de Raios X , Pós , Solubilidade , Cristalização , Suspensões
3.
Pharmaceutics ; 15(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896206

RESUMO

The dissolution rate of the anti-HIV drug saquinavir base (SQV), a poorly water-soluble and extremely low absolute bioavailability drug, was improved through a eutectic mixture formation approach. A screening based on a liquid-assisted grinding technique was performed using a 1:1 molar ratio of the drug and the coformers sodium saccharinate, theobromine, nicotinic acid, nicotinamide, vanillin, vanillic acid, and piperine (PIP), followed by differential scanning calorimetry (DSC). Given that SQV-PIP was the only resulting eutectic system from the screening, both the binary phase and the Tammann diagrams were adapted to this system using DSC data of mixtures prepared from 0.1 to 1.0 molar ratios in order to determine the exact eutectic composition. The SQV-PIP system formed a eutectic at a composition of 0.6 and 0.40, respectively. Then, a solid-state characterization through DSC, powder X-ray diffraction (PXRD), including small-angle X-ray scattering (SAXS) measurements to explore the small-angle region in detail, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a powder dissolution test were performed. The conventional PXRD analyses suggested that the eutectic mixture did not exhibit structural changes; however, the small-angle region explored through the SAXS instrument revealed a change in the crystal structure of one of their components. FT-IR spectra showed no molecular interaction in the solid state. Finally, the dissolution profile of SQV in the eutectic mixture was different from the dissolution of pure SQV. After 45 min, approximately 55% of the drug in the eutectic mixture was dissolved, while, for pure SQV, 42% dissolved within this time. Hence, this study concludes that the dissolution rate of SQV can be effectively improved through the approach of using PIP as a coformer.

4.
ACS Omega ; 7(17): 14897-14909, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557697

RESUMO

The design of new pharmaceutical solids with improved physical and chemical properties can be reached through in-detail knowledge of the noncovalent intermolecular interactions between the molecules in the context of crystal packing. Although crystallization from solutions is well-known for obtaining new solids, the effect of some variables on crystallization is not yet thoroughly understood. Among these variables, solvents are noteworthy. In this context, the present study aimed to investigate the effect of ethanol (EtOH), acetonitrile (MeCN), and acetone (ACTN) on obtaining irbesartan (IBS) crystal forms with 2,3-dibromosuccinic acid. Crystal structures were solved by single-crystal diffraction, and the intermolecular interactions were analyzed using the Hirshfeld surfaces analysis. The characterization of physicochemical properties was carried out by powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), thermal analysis, and solution-state NMR techniques. Two different IBS salts were obtained, one from MeCN and ACTN (compound 1) and a different one from EtOH (compound 2). The experimental results were in agreement with the findings obtained through quantum mechanics continuum solvation models. Compound 1 crystallized as a monoclinic system P21/c, whereas compound 2 in a triclinic system P1̅. In both structures, a net of strong hydrogen bonds is present, and their existence was confirmed by the FT-IR results. In addition, the IBS cation acts as a H-bond donor through the N1 and N6 nitrogen atoms which interact with the bromide anion and the water molecule O1W in compound 1. Meanwhile, N1 and N6 nitrogen atoms interact with the oxygen atoms provided by two symmetry-related 2,3-dibromo succinate anions in compound 2. Solution-state NMR data agreed with the protonation of the imidazolone ring in the crystal structure of compound 1. Both salts presented a different thermal behavior not only in melting temperature but also in thermal stability.

5.
Pharm Res ; 39(1): 189-200, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35064418

RESUMO

PURPOSE: To understand the anomalous behavior of Saquinavir Mesylate (SQVM) in sodium decyl sulfate (SDS) medium during a dissolution test through a crystallographic analysis of the crystal obtained. As a result, it will be possible to elucidate its crystal structure and carry out a complete solid-state characterization of the API. METHODS: The solid form obtained was characterized by a structural analysis through X-ray single crystal and powder diffraction. The crystallographic structures of the new salt and the SQVM were compared. In addition, a complete solid-state characterization of SQVM raw material was carried out by techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy, scanning electron microscopy and a dissolution method. RESULTS: A new salt consisting of SQVM and SDS was crystallized and its crystal structure was elucidated and reported herein for the first time. The anionic part of SDS interacts with the cationic segment of SQVM to obtain a new salt designated as SQV-DS, which precipitates. The main difference between the two structures occurs in the c-axis expansion, which increases from 15.966 (5) to 21.1924 (14), respectively. CONCLUSIONS: Some of the strategies to enhance the dissolution rate of poorly aqueous soluble APIs include the use of surfactants such as SDS in the dissolution medium, as well as in the formulated products. However, there have been constant reports of a dissolution rate slowdown by some surfactants. The interaction mechanisms between the APIs and the dissolution medium containing surfactants need to be carefully investigated in current pharmaceutical formulations. Graphical Abstract.


Assuntos
Saquinavir , Sódio , Varredura Diferencial de Calorimetria , Preparações Farmacêuticas , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfatos , Difração de Raios X
6.
J Pharm Anal ; 9(5): 339-346, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31929943

RESUMO

Irbesartan (IBS) is a tetrazole derivative and antihypertensive drug that has two interconvertible structures, 1H- and 2H-tautomers. The difference between them lies in the protonation of the tetrazole ring. In the solid-state, both tautomers can be isolated as crystal forms A (1H-tautomer) and B (2H-tautomer). Studies have reported that IBS is a polymorphic system and its forms A and B are related monotropically. These reports indicate form B as the most stable and less soluble form. Therefore, the goal of this contribution is to demonstrate through a complete solid-state characterization, thermodynamic study and dissolution properties that the IBS forms are desmotropes that are not related monotropically. However, the intention is also to call attention to the importance of conducting strict chemical and in solid-state quality controls on the IBS raw materials. Hence, powder X-ray diffraction (PXRD) and Raman spectroscopy (RS) at ambient and non-ambient conditions, differential scanning calorimetry (DSC), hot stage microscopy (HSM), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) techniques were applied. Furthermore, intrinsic dissolution rate (IDR) and structural stability studies at 98% relative humidity (RH), 25 °C and 40 °C were conducted as well. The results show that in fact, form A is approximately four-fold more soluble than form B. In addition, both IBS forms are stable at ambient conditions. Nevertheless, structural and/or chemical instability was observed in form B at 40 °C and 98% RH. IBS has been confirmed as a desmotropic system rather than a polymorphic one. Consequently, forms A and B are not related monotropically.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-790238

RESUMO

Irbesartan (IBS) is a tetrazole derivative and antihypertensive drug that has two interconvertible struc-tures, 1H-and 2H-tautomers. The difference between them lies in the protonation of the tetrazole ring. In the solid-state, both tautomers can be isolated as crystal forms A (1H-tautomer) and B (2H-tautomer). Studies have reported that IBS is a polymorphic system and its forms A and B are related monotropically. These reports indicate form B as the most stable and less soluble form. Therefore, the goal of this contribution is to demonstrate through a complete solid-state characterization, thermodynamic study and dissolution properties that the IBS forms are desmotropes that are not related monotropically. However, the intention is also to call attention to the importance of conducting strict chemical and in solid-state quality controls on the IBS raw materials. Hence, powder X-ray diffraction (PXRD) and Raman spectroscopy (RS) at ambient and non-ambient conditions, differential scanning calorimetry (DSC), hot stage microscopy (HSM), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) techniques were applied. Furthermore, intrinsic dissolution rate (IDR) and structural stability studies at 98%relative humidity (RH), 25 ?C and 40 ?C were conducted as well. The results show that in fact, form A is approximately four-fold more soluble than form B. In addition, both IBS forms are stable at ambient conditions. Nevertheless, structural and/or chemical instability was observed in form B at 40 ?C and 98%RH. IBS has been confirmed as a desmotropic system rather than a polymorphic one. Consequently, forms A and B are not related monotropically.

8.
Eur J Pharm Sci ; 99: 310-317, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28042101

RESUMO

Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor (NNRTI), is part of first-line therapy for the treatment of human immunodeficiency virus type 1 infection (HIV-1/AIDS). This drug shows relatively low oral absorption and bioavailability, as well as high intra- and inter-subject variability. Several studies have shown that treatment failure and adverse effects are associated with low and high EFV plasma concentrations, respectively. Some studies suggest different EFV formulations to minimize inter-patient variability and improve its solubility and dissolution; however, all of these formulations are complex, using for instance, cyclodextrins, dendrimers and polymeric nanoparticles, rendering them inviable industrially. The aim of this work was to prepare simple and low-cost suspensions of EFV for improvement of solubility and dissolution rate by using colloid mill, spray or freeze-drying, and characterization of the powders obtained. The results demonstrated an increase in the dissolution rate of EFV, using 0.2% of sodium lauryl sulfate (SLS) and 0.2% of hydroxypropylcellulose (HPC) or hydroxypropylmetilcellulose (HPMC) in both freeze and spray dried powders. The pharmacokinetic studies demonstrated improved pharmacokinetic parameters for the formulation containing SLS and HPC. The powders obtained, which present enhanced dissolution properties, can be incorporated in a solid dosage form for treatment of AIDS in paediatric patients with promising results.


Assuntos
Benzoxazinas/química , Benzoxazinas/farmacocinética , Coloides/química , Alcinos , Animais , Celulose/análogos & derivados , Celulose/química , Química Farmacêutica/métodos , Ciclopropanos , Composição de Medicamentos , Nariz Eletrônico , Liofilização/métodos , Masculino , Nanopartículas/química , Tamanho da Partícula , Pós/química , Pós/farmacocinética , Ratos , Ratos Wistar , Dodecilsulfato de Sódio/química , Solubilidade , Suspensões/química , Suspensões/farmacocinética
9.
Eur J Pharm Biopharm ; 91: 52-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661587

RESUMO

Polymorphism and particle size distribution can impact the dissolution behaviour and, as a consequence, bioavailability and bioequivalence of poorly soluble drugs, such as Efavirenz (EFV). Nevertheless, these characteristics do not explain some failures occurring in in vitro assays and in in vivo studies. EFV belongs to Class II and the High Activity Antiretroviral Therapy (HAART) is considered the best choice in the treatment of adults and children. EFV is a drug that needs bioequivalence studies for generic compounds. In this work, six raw materials were analyzed and two of them were utilized with human volunteers (in vivo assays or bioequivalence). All the routine pharmaceutical controls of raw materials were approved; however, the reasons for the failure of the bioequivalence assay could not be explained with current knowledge. The aim of this work was to study microstructure, a solid-state property of current interest in the pharmaceutical area, in order to find an explanation for the dissolution and bioequivalence behaviour. The microstructure of EFV raw materials was studied by Whole Powder Pattern Modelling (WPPM) of X-ray powder diffraction data. Results for different EFV batches showed the biorelevance of the crystalline domain size, and a clear correlation with in vitro (dissolution tests) and in vivo assays (bioequivalence).


Assuntos
Fármacos Anti-HIV/química , Benzoxazinas/química , Modelos Biológicos , Inibidores da Transcriptase Reversa/química , Alcinos , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Benzoxazinas/farmacocinética , Benzoxazinas/uso terapêutico , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Ciclopropanos , Contaminação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Cinética , Microscopia Eletrônica de Varredura , Estrutura Molecular , Tamanho da Partícula , Difração de Pó , Pós , Reprodutibilidade dos Testes , Inibidores da Transcriptase Reversa/farmacocinética , Inibidores da Transcriptase Reversa/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Síncrotrons , Equivalência Terapêutica
10.
Scanning ; 35(4): 213-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23034679

RESUMO

In this article, morphology of progesterone polymorphs prepared by polymer-induced heteronucleation (PIHn) technique was studied. Hydroxypropyl methylcellulose(HPMC), such as dextran T-500 and gelatin G-9382, polyisoprene (PI), and acrylonitrile/butadiene copolymer (NBR) were used as substrates. The crystallizations were performed by solvent evaporation at room temperature from 0.5, 10, and 40 mg/ml solutions in chloroform and acetone. Progesterone polymorphs were identified by X-ray diffraction. Differential scanning calorimetry and total attenuated reflectance infrared spectroscopy were used as complementary techniques in the identification. Depending on the polymeric matrix and the concentration used, form 1, form 2, or mixture of both polymorphs were obtained. Scanning electron microscopy pictures evidenced difference in morphology and in homogeneity of the two progesterone polymorphs. These polymorphs prepared by PIHn, did not present a distinctive morphology that allows identifying polymorph by its crystal habit. Hence, polymeric matrix induced the crystallization, affecting polymorphism and morphology.


Assuntos
Cristalização , Polímeros/química , Progesterona/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Análise Espectral , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...