Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1199939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251563

RESUMO

Background: The repair of wounds usually caused by trauma or other chronic diseases remained challenging in clinics due to the potential risk of inflammation and inadequate tissue regenerative properties. Among them, the behaviour of immune cells, such as macrophages, is critical in tissue repair. Materials and methods: In this study, a water-soluble phosphocreatine-grafted methacryloyl chitosan (CSMP) was synthesized with a one-step lyophilization method, followed by the fabrication of CSMP hydrogel with a photocrosslinked method. The microstructure, water absorption and mechanical properties for the hydrogels were investigated. Then, the macrophages were co-cultured with hydrogels and the pro-inflammatory factors and polarization markers for these macrophages were detected through real-time quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), and flow cytometry methods. Finally, the CSMP hydrogel was implanted in a wound defect area in mice to test its ability to promote wound healing. Results: The lyophilized CSMP hydrogel had a porous structure with pores ranging in size from 200 to 400 µm, which was larger than the CSM hydrogel's. The lyophilized CSMP hydrogel possessed a higher water absorption rate compared with the CSM hydrogel. The compressive stress and modulus of these hydrogels were increased in the initial 7 days immersion and then gradually decreased during the in vitro immersion in PBS solution up to 21 days; the CSMP hydrogel showed a higher value in these parameters versus the CSM hydrogel. The CSMP hydrogel inhibited the expression of inflammatory factors such as interleukin-1ß (IL-1ß), IL-6, IL-12, and tumor necrosis factor-α (TNF-α) in an in vitro study cocultured with pro-inflammatory factors in pre-treated bone marrow-derived macrophages (BMM). The mRNA sequencing results showed that the CSMP hydrogel might inhibit the macrophages' M1 type polarization through the NF-κB signaling pathway. Furthermore, when compared to the control group, the CSMP hydrogel promoted more skin area repair in the mouse wound defect area, and inflammatory factors such as IL-1ß, IL-6, and TNF-α were lower in the repaired tissue for the CSMP group. Conclusion: This phosphate-grafted chitosan hydrogel showed great promise for wound healing through regulating the macrophage's phenotype via the NF-κB signaling pathway.

2.
ACS Appl Mater Interfaces ; 14(6): 7592-7608, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119809

RESUMO

Natural polysaccharide (NPH)-based injectable hydrogels have shown great potential for critical-sized bone defect repair. However, their osteogenic, angiogenic, and mechanical properties are insufficient. Here, MgO nanoparticles (NPs) were incorporated into a newly synthesized water-soluble phosphocreatine-functionalized chitosan (CSMP) water solution to form an injectable hydrogel (CSMP-MgO) via supramolecular combination between phosphate groups in CSMP and magnesium in MgO NPs to circumvent these drawbacks of chitosan-based injectable hydrogels. Water-soluble chitosan deviate CSMP was first synthesized by grafting methacrylic anhydride and phosphocreatine into a chitosan chain in a one-step lyophilization process. The phosphocreatine in this hydrogel not only provides sites to combine with MgO NPs to form supramolecular binding but also serves as the reservoir to control Mg2+ release. As a result, the lyophilized CSMP-MgO hydrogels presented a porous structure with some small holes in the pore wall, and the pore diameters ranged from 50 to 100 µm. The CSMP-MgO injectable hydrogels were restricted from swelling in DI water (lowest swelling ratio was 16.0 ± 1.1 g/g) and presented no brittle failure during compression even at a strain above 85% (maximum compressive strength was 195.0 kPa) versus the control groups (28.0 and 41.3 kPa for CSMP and CSMP-MgO (0.5) hydrogels), with regulated Mg2+ release in a stable and sustained manner. The CSMP-MgO injectable hydrogels promoted in vitro calcium phosphate (hydroxyapatite (HA) and tetracalcium phosphate (TTCP)) deposition in supersaturated calcium phosphate solution and presented no cytotoxicity to MC3T3-E1 cells; the CSMP-MgO hydrogel promoted MC3T3-E1 cell osteogenic differentiation with upregulation of BSP, OPN, and Osterix osteogenic gene expression and mineralization and HUVEC tube formation. Among them, CSMP-MgO (5) presented most of these properties. Moreover, this hydrogel (CSMP-MgO (5)) showed an excellent ability to promote new bone formation in critical-sized calvarial defects in rats. Thus, the CSMP-MgO injectable hydrogel shows great promise for bone regeneration.


Assuntos
Quitosana , Nanopartículas , Animais , Regeneração Óssea , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Hidrogéis/química , Hidrogéis/farmacologia , Óxido de Magnésio/farmacologia , Nanopartículas/química , Osteogênese , Óxidos , Ratos
3.
Bio Protoc ; 8(22): e3080, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34532538

RESUMO

Mesenchymal stem cells (MSCs) are invaluable cell sources for understanding stem cell biology and potential application in tissue engineering and regenerative medicine. The current issues of MSCs that demand to be further addressed are limited donors, tissue sources and limited capacity of ex vivo expansion. Here, we describe a simple and easy protocol for generating functional mesenchymal stem cells from human pluripotent stem cells (hPSCs) via one-step low glucose medium switch strategy in feeder-free culture system. In this protocol, human induced pluripotent stem cells (hiPSCs) and H9 human embryonic stem cells (hESCs) were successfully differentiated into MSCs, named hiPSC-MSCs and hESC-MSCs, respectively. The derived hiPSC-MSCs and hESC-MSCs exhibited common MSC characteristics as MSCs derived from human bone marrow (hBM-MSCs), including expressing MSC surface markers and possessing capability of tri-lineage differentiation in vitro (adipogenesis, osteogenesis and chondrogenesis). As compared with other available protocols, our protocol can be applied to generate a large number of MSCs from hPSCs with high efficiency, low-cost manner, moreover, not involving embryoid body, mouse feeder-cell, flow sorting, and pathway inhibitors (such as SB203580 and SB431542). We believe that this protocol could provide a robust platform to reach the future demand for producing the industrial scale of MSC from hPSCs for autologous cell-based therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...