Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 2486-2501, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36102940

RESUMO

Hepatitis B virus (HBV) exists as quasispecies (QS). However, the evolutionary characteristics of haplotypes of HBV X gene in the hepatocellular carcinoma (HCC) microenvironment remain unclear. Mutations across X gene are essential for the tumorigenicity of HBV X protein (HBx). However, the functional phenotypes of many mutant HBx remain unknown. This study aims to compare the characteristics of X gene evolution between tumour and non-tumour tissues in HCC patients and investigate the tumorigenic phenotype of HBx harbouring mutation T81P/S101P/L123S. This study included 24 HCC patients. Molecular cloning of X gene was performed to analyse characteristics of haplotypes in liver tissues. HCC cell lines stably expressing wild-type or mutant HBx and subcutaneous tumour xenograft mouse model were used to assess HBx-T81P/S101P/L123S tumorigenicity. The mean heterogeneity of HBV QS across X gene in tumour tissues was lower than that in non-tumour tissues. A location bias was observed in X gene clones with genotype C or D in tumour tissues compared to those with genotype B. Mutations in genotype-C or - D clones were mainly clustered in the dimerization region and aa110-aa140 within the transactivation region. A novel mutation combination at residues 81, 101 and 123 was identified in tumour tissues. Further, HBx-T81P/S101P/L123S promotes cell proliferation and increases genomic instability, which was mediated by MYC. This study elucidates the compartmentalized evolution patterns of HBV X gene between intra tumour and non-tumour tissues in HCC patients and provides a new mechanism underlying HBV-driven hepatocarcinogenesis, suggesting a potential viral marker for monitoring HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Estudos de Associação Genética , Microambiente Tumoral
2.
Front Immunol ; 13: 927761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844530

RESUMO

The need to be diagnosed with liver biopsy makes the clinical progression of chronic HBV infection diagnosis a challenge. Existing HBV serum biochemical assays are used throughout clinical but have limited effects. Studies have shown that mitochondrial function is tightly coupled to HBV infection. Here, we verified the diagnostic value of serum Adenosine Triphosphate (ATP) as a potential marker for differential HBV infection progress by detecting the level of ATP in the serum from a wide spectrum of HBV-infected populations, and confirmed the role of ATP in the deterioration of HBV infection-related diseases through HBV-infected cells and mouse models. The results showed that there were significantly lower serum ATP levels in HBeAg-positive CHB patients compared with healthy controls. And during the progression of CHB to liver cirrhosis and hepatocellular carcinoma, the ATP level was increased but not higher than healthy controls. The area under the curve (AUC) of serum ATP was 0.9063 to distinguish HBeAg-positive CHB from healthy, and another AUC was 0.8328 in the CHB against the HCC group. Preliminary exploration of the mechanism indicated that the decline of serum ATP was due to impaired mitochondria in CHB patients. Our data provide evidence that serum ATP distinguishes the various progress of HBV infection-related diseases and expands diagnostic biomarkers for HBeAg-positive CHB patients with healthy controls.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Trifosfato de Adenosina , Animais , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Diagnóstico Diferencial , Progressão da Doença , Hepatite B/diagnóstico , Antígenos E da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica/patologia , Neoplasias Hepáticas/diagnóstico , Camundongos
3.
Intractable Rare Dis Res ; 9(1): 14-22, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32201670

RESUMO

Wnt1 is the first member of the Wnt family that was identified. It is phylogenetically conserved and essential for oncogenesis and multiple developmental processes. This study has summarized diseases and mutations related to Wnt1. Wnt1 is involved in various cancers, genetic type XV osteogenesis imperfecta, osteoporosis, and neurological diseases. The expression of Wnt1 in normal tissues and different types of cancers and the potential survival of cancer were analyzed using experiment-based bioinformatic analysis. Systematic analysis indicated that abnormal expression of Wnt1 is significantly associated with cancers, such as kidney renal carcinoma, hepatocellular carcinoma, thyroid carcinoma, head and neck squamous cell carcinoma, and uterine corpus endometrial carcinoma. GeneMANIA and STRING predicted that 32 proteins were involved with Wnt1 in Wnt signaling pathways and sorting and secretion of Wnts. These interacting molecules significantly co-occurred according to cBioPortal analysis. Thirty-three genes with an alteration frequency of more than 50% were observed in several cancers like esophageal squamous cell carcinoma, melanoma, and non-small cell lung cancer. Functional and experiment-based bioinformatics indicated that Wnt1 may act as a target of a potential biomarker for various types of human cancers. Wnt1 and other Wnt1-related proteins and signaling pathways may be ways to treat osteoporosis.

4.
Intractable Rare Dis Res ; 8(2): 150-153, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218168

RESUMO

Osteogenesis imperfecta (OI) is a genetic disorder characterized by bone fragility and blue sclerae, which are mainly caused by a mutation of the COL1A1 or COL1A2 genes that encode type I procollagen. Mutations in the splice site of type I collagen genes are one of the mutations that cause OI and usually lead to a mild or moderate OI phenotype. A heterozygous A to G point mutation in intron 9 at the -2 position of the splice receptor site of COL1A1 was identified in a family with type I or IV OI. Three affected individuals in four generations of one family all presented with several clinical symptoms. They all had pectus carinatum, flat feet, gray-blue sclerae, and normal stature, teeth, hearing, and vision. Forearm fractures, small joint dislocations, and muscle weakness were all present in the patient's father and grandmother, who presented with a moderate type IV phenotype. The 10-year-old proband with type I OI had suffered a fracture twice, but had no history of joint dislocation or skin hyperextensibility. Charting the family helped to identify clinical symptoms in patients with mutations at the N-terminal of type I collagen genes.

5.
Intractable Rare Dis Res ; 4(1): 49-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25674388

RESUMO

Osteogenesis imperfecta (OI) is an inheritable connective tissue disorder with a broad clinical heterozygosis, which can be complicated by other connective tissue disorders like Ehlers-Danlos syndrome (EDS). OI/EDS are rarely documented. Most OI/EDS mutations are located in the N-anchor region of type I procollagen and predominated by glycine substitution. We identified a c.3521C>T (p.A1174V) heterozygous mutation in COL1A1 gene in a four-generation pedigree with proposed mild OI/EDS phenotype. The affected individuals had blue sclera and dentinogenesis imperfecta (DI) was uniformly absent. The OI phenotype varied from mild to moderate, with the absence of scoliosis and increased skin extensibility. Easy bruising, joint dislocations and high Beighton score were present in some affected individuals. EDS phenotype is either mild or unremarkable in some individuals. The mutation is poorly conserved and in silico prediction support the relatively mild phenotype. The molecular mechanisms of the mutation that leads to the possible OI/EDS phenotype should be further identified by biochemical analysis of N-propeptide processing and steady state collagen analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...