Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 653, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987678

RESUMO

BACKGROUND: Walnut anthracnose caused by Colletotrichum gloeosporioides seriously endangers the yield and quality of walnut, and has now become a catastrophic disease in the walnut industry. Therefore, understanding both pathogen invasion mechanisms and host response processes is crucial to defense against C. gloeosporioides infection. RESULTS: Here, we investigated the mechanisms of interaction between walnut fruits (anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts) and C. gloeosporioides at three infection time points (24hpi, 48hpi, and 72hpi) using a high-resolution time series dual transcriptomic analysis, characterizing the arms race between walnut and C. gloeosporioides. A total of 20,780 and 6670 differentially expressed genes (DEGs) were identified in walnut and C. gloeosporioides against 24hpi, respectively. Generous DEGs in walnut exhibited opposite expression patterns between F26 and F423, which indicated that different resistant materials exhibited different transcriptional responses to C. gloeosporioides during the infection process. KEGG functional enrichment analysis indicated that F26 displayed a broader response to C. gloeosporioides than F423. Meanwhile, the functional analysis of the C. gloeosporioides transcriptome was conducted and found that PHI, SignalP, CAZy, TCDB genes, the Fungal Zn (2)-Cys (6) binuclear cluster domain (PF00172.19) and the Cytochrome P450 (PF00067.23) were largely prominent in F26 fruit. These results suggested that C. gloeosporioides secreted some type of effector proteins in walnut fruit and appeared a different behavior based on the developmental stage of the walnut. CONCLUSIONS: Our present results shed light on the arms race process by which C. gloeosporioides attacked host and walnut against pathogen infection, laying the foundation for the green prevention of walnut anthracnose.


Assuntos
Colletotrichum , Juglans , Doenças das Plantas , Juglans/microbiologia , Juglans/genética , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , RNA-Seq , Frutas/microbiologia , Frutas/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Resistência à Doença/genética
2.
Hortic Res ; 11(7): uhae148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988616

RESUMO

Walnut anthracnose (Colletotrichum gloeosporioides) reduces walnut yield and quality and seriously threatens the healthy development of the walnut industry. WRKY transcription factors (TFs) are crucial regulatory factors involved in plant-pathogen interactions. Our previous transcriptome analysis results indicate that JrWRKY4 responds to infection by C. gloeosporioides, but its specific regulatory network and disease resistance mechanism are still unclear. Herein, the characteristics of JrWRKY4 as a transcription activator located in the nucleus were first identified. Gain-of-function and loss-of-function analyses showed that JrWRKY4 could enhance walnut resistance against C. gloeosporioides. A series of molecular experiments showed that JrWRKY4 directly interacted with the promoter region of JrSTH2L and positively regulated its expression. In addition, JrWRKY4 interacted with JrVQ4 to form the protein complex, which inhibited JrWRKY4 for the activation of JrSTH2L. Notably, a MYB TF JrPHL8 interacting with the JrWRKY4 promoter has also been identified, which directly bound to the MBS element in the promoter of JrWRKY4 and induced its activity. Our study elucidated a novel mechanism of the JrPHL8-JrWRKY4-JrSTH2L in regulating walnut resistance to anthracnose. This mechanism improves our understanding of the molecular mechanism of WRKY TF mediated resistance to anthracnose in walnut, which provides new insights for molecular breeding of disease-resistant walnuts in the future.

3.
Phytomedicine ; 132: 155827, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38955059

RESUMO

BACKGROUND: Atherosclerosis (AS) is the main pathological basis for the development of cardiovascular diseases. Vascular inflammation is an important factor in the formation of AS, and macrophage pyroptosis plays a key role in AS due to its unique inflammatory response. Guizhitongluo Tablet (GZTLT) has shown clinically effective in treating patients with AS, but its mechanism is elusive. PURPOSE: This study was to determine the effects of GZTLT on atherosclerotic vascular inflammation and pyroptosis and to understand its underlying mechanism. MATERIALS AND METHODS: The active constituents of GZTLT were analysed by means of UPLC-HRMS. In vivo experiments were performed using ApoE-/- mice fed a high fat diet for 8 weeks, followed by treatment with varying concentrations of GZTLT orally by gavage and GsMTx4 (GS) intraperitoneally and followed for another 8 weeks. Oil red O, Haematoxylin-eosin (HE) and Masson staining were employed to examine the lipid content, plaque size, and collagen fibre content of the mouse aorta. Immunofluorescence staining was utilised to identify macrophage infiltration, as well as the expression of Piezo1 and NLRP3 proteins in aortic plaques. The levels of aortic inflammatory factors were determined using RT-PCR and ELISA. In vitro, foam cell formation in bone marrow-derived macrophages (BMDMs) was observed using Oil Red O staining. Intracellular Ca2+ measurements were performed to detect the calcium influx in BMDMs, and the expression of NLRP3 and its related proteins were detected by Western blot. RESULTS: The UPLC-HRMS analysis revealed 31 major components of GZTLT. Our data showed that GZTLT inhibited aortic plaque formation in mice and increased plaque collagen fibre content to stabilise plaques. In addition, GZTLT could restrain the expression of serum lipid levels and suppress macrophage foam cell formation. Further studies found that GZTLT inhibited macrophage infiltration in aortic plaques and suppressed the expression of inflammatory factors. It is noteworthy that GZTLT can restrain Piezo1 expression and reduce Ca2+ influx in BMDMs. Additionally, we found that GZTLT could regulate NLRP3 activation and pyroptosis by inhibiting Piezo1. CONCLUSION: The present study suggests that GZTLT inhibits vascular inflammation and macrophage pyroptosis through the Piezo1/NLRP3 signaling pathway, thereby delaying AS development. Our finding provides a potential target for AS treatment and drug discovery.

4.
Adv Sci (Weinh) ; : e2400998, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874015

RESUMO

MYB transcription factors have been linked to anthocyanin synthesis and various color phenotypes in plants. In apple, MYB10 confers a red-flesh phenotype due to a minisatellite insertion in its R6 promoter, but R6:MYB10 genotypes exhibit various degrees of red pigmentation in the flesh, suggesting the involvement of other genetic factors. Here, it is shown that MdWRKY10, a transcription factor identified via DNA pull-down trapping, binds to the promoter of MdMYB10 and activates its transcription. MdWRKY10 specifically interacts with the WDR protein MdTTG1 to join the apple MYB-bHLH-WDR (MBW) complex, which significantly enhances its transcriptional activation activity. A 163-bp InDel detected in the promoter region of the alleles of MdWRKY10 in a hybrid population of identical heterozygous genotypes regarding R6 by structural variation analysis, contains a typical W-box element that MdWRKY10 binds to for transactivation. This leads to increased transcript levels of MdWRKY10 and MdMYB10 and enhanced anthocyanin synthesis in the flesh, largely accounting for the various degrees of flesh red pigmentation in the R6 background. These findings reveal a novel regulatory role of the WRKY-containing protein complex in the formation of red flesh apple phenotypes and provide broader insights into the molecular mechanism governing anthocyanin synthesis in plants.

5.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886635

RESUMO

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Assuntos
Acer , Ácidos Graxos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Acer/genética , Acer/metabolismo , Acer/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Graxos Monoinsaturados
6.
Chin Med ; 19(1): 75, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816815

RESUMO

BACKGROUND: Myocardial infarction (MI) poses a global public health challenge, often associated with elevated mortality rates and a grim prognosis. A crucial aspect of the inflammatory injury and healing process post-MI involves the dynamic differentiation of macrophages. A promising strategy to alleviate myocardial damage after MI is by modulating the inflammatory response and orchestrating the shift from pro-inflammatory (M1) to anti-inflammatory (M2) macrophages, aiming to achieve a reduced M1/M2 ratio. Nuanxinkang (NXK), a simplified herbal decoction, has demonstrated noteworthy cardioprotective, inflammation-regulating, and myocardial energy metabolism-regulating properties. METHODS: In this study, we constructed an MI model by ligating coronary arteries to investigate the efficacy of NXK in improving ventricular remodeling and cardiac function. Mice were administered NXK (1.65 g/kg/d) or an equivalent volume of regular saline via gavage for 28 consecutive days, commencing the day after surgery. Then, we conducted echocardiography to assess the cardiac function, Masson staining to illustrate the extent of myocardial fibrosis, TUNEL staining to reveal myocardial apoptosis, and flow cytometry to analyze the polarization of M1 and M2 macrophages in the hearts. Besides, a lipopolysaccharide (LPS)-induced pro-inflammatory macrophage (M1) polarization model was implemented in RAW264.7 cells to elucidate the underlying mechanism of NXK in regulating macrophage polarization. RAW264.7 cells were pre-treated with or without NXK-containing serum. Oxidative stress was detected by MitoSox staining, followed by Seahorse energy metabolism assay to evaluate alterations in mitochondrial metabolic patterns and ATP production. Both In vivo and in vitro, HIF-1α and PDK1 were detected by fluorescent quantitative PCR and Western blotting. RESULTS: In vivo, MI mice exhibited a decline in cardiac function, adverse ventricular remodeling, and an increase in glycolysis, coupled with M1-dominant polarization mediated by the HIF-1α/PDK1 axis. Notably, robust responses were evident with high-dose NXK treatment (1.65 g/kg/day), leading to a significant enhancement in cardiac function, inhibition of cardiac remodeling, and partial suppression of macrophage glycolysis and the inflammatory phenotype in MI mice. This effect was achieved through the modulation of the HIF-1α/PDK1 axis. In vitro, elevated levels of mitochondrial ROS production and glycolysis were observed in LPS-induced macrophages. Conversely, treatment with NXK notably reduced the oxidative stress damage induced by LPS and enhanced oxidative phosphorylation (OXPHOS). Furthermore, NXK demonstrated the ability to modify the energy metabolism and inflammatory characteristics of macrophages by modulating the HIF-1α/PDK1 axis. The influence of NXK on this axis was partially counteracted by the HIF-1α agonist DMOG. And NXK downregulated PDK1 expression, curtailed glycolysis, and reversed LPS-induced M1 polarization in macrophages, similar to the PDK1 inhibitor DCA. CONCLUSION: In conclusion, NXK protects against MI-induced cardiac remodeling by inducing metabolic reprogramming and phenotypic differentiation of macrophages, achieved through the modulation of the HIF-1α/PDK1 axis. This provides a novel and promising strategy for the treatment of MI.

7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1406-1414, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621989

RESUMO

The clinical data of coronary heart disease(CHD) patients treated in the First Affiliated Hospital of Guangzhou University of Chinese Medicine and Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine from January 2022 to March 2023 were retrospectively collected. This study involved the descriptive analysis of demographic characteristics, clinical symptoms, and tongue and pulse features. The χ~2 test was conducted to analyze the distribution of syndrome elements and their combinations at diffe-rent stages of CHD, so as to reveal the clinical characteristics and syndrome patterns at various pathological stages of CHD. This study extracted 28 symptom entries, 10 tongue manifestation entries, and 7 pulse manifestation entries, summarized the 5 main disease locations of the heart, lung, liver, spleen, and kidney, and the 8 main disease natures of blood stasis, phlegm turbidity, Qi stagnation, heat(fire), fluid retention, Qi deficiency, Yin deficiency, and Yang deficiency and 8 combinations of disease natures. The χ~2 test showed significant differences in the distribution of syndrome elements including the lung, liver, spleen, kidney, blood stasis, heat(fire), Qi stagnation, heat syndrome, water retention, Qi deficiency, Yin deficiency, and Yang deficiency between different disease stages. Specifically, the liver, blood stasis, heat(fire), and Qi stagnation accounted for the highest proportion during unstable stage, and the lung, spleen, kidney, water retention, Qi deficiency, Yin deficiency, and Yang deficiency accounted for the highest proportion at the end stage. The distribution of Qi deficiency varied in the different time periods after percutaneous coronary intervention(PCI). As shown by the χ~2 test of the syndrome elements combination, the distribution of single disease location, multiple disease locations, single disease nature, double disease natures, multiple natures, excess syndrome, and mixture of deficiency and excess varied significantly at different stages of CHD. Specifically, single disease location, single disease nature, and excess syndrome accounted for the highest proportion during the stable stage, and double disease natures accounted for the highest proportion during the unstable stage. Multiple disease locations, multiple disease natures, and mixture of deficiency and excess accounted for the highest proportion during the end stage. In conclusion, phlegm turbidity and blood stasis were equally serious during the stable stage, and a pathological mechanism caused by blood stasis and toxin existed during the unstable stage. The overall Qi deficiency worsened after PCI, and the end stage was accompanied by the Yin and Yang damage and the aggravation of water retention. There were significant differences in the distribution of clinical characteristics and syndrome elements at different stages of CHD. The pathological process of CHD witnessed the growth and decline of deficiency and excess and the combination of phlegm turbidity and blood stasis, which constituted the basic pathogenesis.


Assuntos
Doença das Coronárias , Insuficiência Cardíaca , Intervenção Coronária Percutânea , Humanos , Medicina Tradicional Chinesa , Deficiência da Energia Yang , Deficiência da Energia Yin , Estudos Transversais , Estudos Retrospectivos , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Síndrome , Água
8.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5675-5680, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114161

RESUMO

Depression syndromes(anxiety and depression), as typical psychological disorders, often coexist with and mutually influence coronary heart disease(CHD). They constitute a psycho-cardiology disease involving both the blood vessels of the heart and the spirit of the heart. Based on the theory of "coexistence of diseases and depression syndromes", it was proposed that CHD and depression syndromes coexisted independently and were causally related. The factors of depression syndromes go through the entire course of CHD and have different causal relationships at different stages, leading to a pathogenic process of "depression causing disease" or "disease causing depression". In the chronic latent period, phlegm predominates, with depression leading to the production of phlegm. Phlegm accumulation and Qi stagnation initiate a mutual damage process of psycho-cardiology, marking the onset of the disease. In the pathological development period, blood stasis becomes predominant. Depression leads to blood stasis, which further obstructs Qi circulation, accelerating disease progression. In the acute attack period, toxicity becomes crucial. Depression transforms into toxicity, damaging Qi and blood, disturbing the balance of the mind, and inducing a sudden and severe exacerbation of the disease. Based on this, the approach of treating phlegm and depression together, treating blood stasis and depression together, and treating toxicity and depression together by stages was established. Research has found that this approach can simultaneously improve organic damage and emotional disorders, and also has a regulating effect on micro-level syndrome indicators, achieving harmonization of psycho-cardiology in the treatment.


Assuntos
Doença das Coronárias , Medicina Tradicional Chinesa , Humanos , Depressão/diagnóstico , Doença das Coronárias/diagnóstico , Muco , Síndrome , Ansiedade
9.
Hortic Res ; 10(6): uhad086, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37786525

RESUMO

Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a C. gloeosporioides-induced lncRNA, lncRNA109897, located upstream from the target gene JrCCR4, upregulated the expression of JrCCR4. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of lncRNA109897 to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of Arabidopsis thaliana further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of C. gloeosporioides. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.

10.
Hortic Res ; 10(5): uhad049, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200839

RESUMO

Anthocyanins are valuable compounds in red-fleshed apples. The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway. However, other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized. In this study, we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis. The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins. In binding experiments, we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT. Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter. Additionally, the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA. Therefore, we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.

11.
Int J Mol Med ; 51(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37114562

RESUMO

Diabetic cardiomyopathy (DCM) is a cardiovascular disease which has been reported as a major cause of mortality worldwide for several years. Berberine (BBR) is a natural compound extracted from a Chinese herb, with a clinically reported anti­DCM effect; however, its molecular mechanisms have not yet been fully elucidated. The present study indicated that BBR markedly alleviated DCM by inhibiting IL­1ß secretion and the expression of gasdermin D (Gsdmd) at the post­transcriptional level. Considering the importance of microRNAs (miRNAs/miRs) in the regulation of the post­transcriptional process of specific genes, the ability of BBR to upregulate the expression levels of miR­18a­3p by activating its promoter (­1,000/­500) was examined. Notably, miR­18a­3p targeted Gsdmd and abated pyroptosis in high glucose­treated H9C2 cells. Moreover, miR­18a­3p overexpression inhibited Gsdmd expression and improved biomarkers of cardiac function in a rat model of DCM. On the whole, the findings of the present study indicate that BBR alleviates DCM by inhibiting miR­18a­3p­mediated Gsdmd activation; thus, BBR may be considered a potential therapeutic agent for the treatment of DCM.


Assuntos
Berberina , Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , Animais , Ratos , Berberina/farmacologia , Berberina/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Inflamassomos/metabolismo , MicroRNAs/genética , MicroRNAs/farmacologia , Piroptose
12.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1431-1437, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005830

RESUMO

Atherosclerosis(AS) is the key pathological basis of coronary heart disease(CHD), and lipid infiltration is a classical theory to explain the pathological mechanism of AS. The theory highlights that the occurrence and development of AS are closely related to abnormal lipid metabolism, with the essence of the pathological reaction caused by the invasion of lipids into arterial intima from plasma. Phlegm and blood stasis are physiologically homologous and subject to pathological co-existence. Phlegm-blood stasis correlation is the basic theory to explain the pathogenesis characteristics of CHD and has important guiding significance for revealing the mecha-nism of lipid infiltration of CHD. Phlegm is the pathological product of abnormal metabolism of Qi, blood, and body fluid, and a gene-ral summary of a series of abnormally expressed lipid substances. Among them, turbid phlegm invades the heart vessels, gradually accumulates, and condenses to achieve the qualitative change from "invisible pathogen" to "tangible pathogen", which corresponds to the mechanism of lipid migration and deposition in the intima of blood vessels, and is the starting factor of the disease. Blood stasis is the continuous development of phlegm, and it is a result of pathological states such as decreased blood fluidity, increased blood coagulation, and abnormal rheology. The fact that blood stasis caused by phlegm accords with the pathological process of "lipid abnormality-circulatory disturbance" and is the central link of the disease. Phlegm and blood stasis aggravate each other and lead to indissoluble cementation. The phlegm-blood stasis combination serves as common pathogen to trigger the disease, which is the inevitable outcome of the disease. Based on the phlegm-blood stasis correlation theory, the simultaneous treatment of phlegm and blood stasis is established. It is found that this therapy can simultaneously regulate blood lipid, reduce blood viscosity, and improve blood circulation, which can fundamentally cut off the biological material basis of the reciprocal transformation between phlegm and blood stasis, thus exerting a significant curative effect.


Assuntos
Aterosclerose , Doença das Coronárias , Humanos , Medicina Tradicional Chinesa , Muco , Lipídeos
13.
Front Microbiol ; 14: 1137590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998393

RESUMO

The intercropping of grass in orchards has beneficial effects on soil properties and soil microbial communities and is an important soil management measure for improving orchard productivity and land-use efficiency. However, few studies have explored the effects of grass intercropping on rhizosphere microorganisms in walnut orchards. In this study, we explored the microbial communities of clear tillage (CT), walnut/ryegrass (Lolium perenne L.) (Lp), and walnut/hairy vetch (Vicia villosa Roth.) (Vv) intercropping system using MiSeq sequencing and metagenomic sequencing. The results revealed that the composition and structure of the soil bacterial community changed significantly with walnut/Vv intercropping compared to CT and walnut/Lp intercropping. Moreover, the walnut/hairy vetch intercropping system had the most complex connections between bacterial taxa. In addition, we found that the soil microorganisms of walnut/Vv intercropping had a higher potential for nitrogen cycling and carbohydrate metabolism, which may be related to the functions of Burkholderia, Rhodopseudomonas, Pseudomonas, Agrobacterium, Paraburkholderia, and Flavobacterium. Overall, this study provided a theoretical basis for understanding the microbial communities associated with grass intercropping in walnut orchards, providing better guidance for the management of walnut orchards.

14.
Plant Physiol ; 192(3): 2081-2101, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36815241

RESUMO

Enhancing fruit sugar contents, especially for high-flavonoid apples with a sour taste, is one of the main goals of horticultural crop breeders. This study analyzed sugar accumulation and the underlying mechanisms in the F2 progenies of a hybridization between the high-sugar apple (Malus × domestica) variety "Gala" and high-flavonoid apple germplasm "CSR6R6". We revealed that MdSWEET9b (sugars will eventually be exported transporter) helps mediate sugar accumulation in fruits. Functional characterization of MdSWEET9b in yeast mutants lacking sugar transport as well as in overexpressing and CRISPR/Cas9 knockdown apple calli revealed MdSWEET9b could transport sucrose specifically, ultimately promoting normal yeast growth and accumulation of total sugar contents. Moreover, MdWRKY9 bound to the MdSWEET9b promoter and regulated its activity, which responded to abscisic acid (ABA) signaling. Furthermore, MdWRKY9 interacted with MdbZIP23 (basic leucine zipper) and MdbZIP46, key ABA signal transducers, at the protein and DNA levels to enhance its regulatory effect on MdSWEET9b expression, thereby influencing sugar accumulation. Based on the contents of ABA in lines with differing sugar contents and the effects of ABA treatments on fruits and calli, we revealed ABA as one of the main factors responsible for the diversity in apple fruit sugar content. The results of this study have clarified how MdSWEET9b influences fruit sugar accumulation, while also further elucidating the regulatory effects of the ABA-signaling network on fruit sugar accumulation. This work provides a basis for future explorations of the crosstalk between hormone and sugar metabolism pathways.


Assuntos
Malus , Malus/metabolismo , Açúcares/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Saccharomyces cerevisiae/metabolismo , Carboidratos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant J ; 113(5): 1062-1079, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606413

RESUMO

Sugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin. A series of molecular experiments (such as electrophoretic mobility shift and luciferase assays) confirmed that MdMYB305 combines with sugar-related genes (MdCWI1/MdVGT3/MdTMT2) and anthocyanin-related genes (MdF3H/MdDFR/MdUFGT), promoting and inhibiting their activities, and finally regulating the sugar and anthocyanin content of fruits. In addition, the study also found that MdMYB305 competes with MdMYB10 for the MdbHLH33 binding site to balance sugar and anthocyanin accumulation in the fruits, which provides a reference value for exploring more functions of the MYB-bHLH-MYB complex and the balance relationship between sugar and anthocyanin in the future.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Açúcares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal
16.
New Phytol ; 238(4): 1516-1533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710519

RESUMO

The anthocyanin content is an important indicator of the nutritional value of most fruits, including apple (Malus domestica). Anthocyanin synthesis is coordinately regulated by light and various phytohormones. In this study on apple, we revealed the antagonistic relationship between light and brassinosteroid (BR) signaling pathways, which is mediated by BRASSINAZOLE-RESISTANT 1 (MdBZR1) and the B-box protein MdCOL6. The exogenous application of brassinolide inhibited the high-light-induced anthocyanin accumulation in red-fleshed apple seedlings, whereas increases in the light intensity decreased the endogenous BR content. The overexpression of MdBZR1 inhibited the anthocyanin synthesis in apple plants. An exposure to a high-light intensity induced the degradation of dephosphorylated MdBZR1, resulting in functional impairment. MdBZR1 was identified as an upstream repressor of MdCOL6, which promotes anthocyanin synthesis in apple plants. Furthermore, MdBZR1 interacts with MdCOL6 to attenuate its ability to activate MdUFGT and MdANS transcription. Thus, MdBZR1 negatively regulates MdCOL6-mediated anthocyanin accumulation. Our study findings have clarified the molecular basis of the integration of light and BR signals during the regulation of anthocyanin biosynthesis, which is an important process influencing fruit quality.


Assuntos
Malus , Malus/metabolismo , Antocianinas/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Front Plant Sci ; 13: 991197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147226

RESUMO

Yellowhorn (Xanthoceras sorbifolium) is an oil-bearing tree species growing naturally in poor soil. The kernel of yellowhorn contains valuable fatty acids like nervonic acid. However, the genetic basis underlying the biosynthesis of valued fatty acids and adaptation to harsh environments is mainly unexplored in yellowhorn. Here, we presented a haplotype-resolved chromosome-scale genome assembly of yellowhorn with the size of 490.44 Mb containing scaffold N50 of 34.27 Mb. Comparative genomics, in combination with transcriptome profiling analyses, showed that expansion of gene families like long-chain acyl-CoA synthetase and ankyrins contribute to yellowhorn fatty acid biosynthesis and defense against abiotic stresses, respectively. By integrating genomic and transcriptomic data of yellowhorn, we found that the transcription of 3-ketoacyl-CoA synthase gene XS04G00959 was consistent with the accumulation of nervonic and erucic acid biosynthesis, suggesting its critical regulatory roles in their biosynthesis. Collectively, these results enhance our understanding of the genetic basis underlying the biosynthesis of valuable fatty acids and adaptation to harsh environments in yellowhorn and provide foundations for its genetic improvement.

18.
Front Plant Sci ; 13: 918202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909724

RESUMO

Identifying the genetic variation characteristics of phenotypic traits is important for fruit tree breeding. During the long-term evolution of fruit trees, gene recombination and natural mutation have resulted in a high degree of heterozygosity. Apple (Malus × domestica Borkh.) shows strong ecological adaptability and is widely cultivated, and is among the most economically important fruit crops worldwide. However, the high level of heterozygosity and large genome of apple, in combination with its perennial life history and long juvenile phase, complicate investigation of the genetic basis of fruit quality traits. With continuing augmentation in the apple genomic resources available, in recent years important progress has been achieved in research on the genetic variation of fruit quality traits. This review focuses on summarizing recent genetic studies on apple fruit quality traits, including appearance, flavor, nutritional, ripening, and storage qualities. In addition, we discuss the mapping of quantitative trait loci, screening of molecular markers, and mining of major genes associated with fruit quality traits. The overall aim of this review is to provide valuable insights into the mechanisms of genetic variation and molecular breeding of important fruit quality traits in apple.

19.
Plant J ; 111(4): 1152-1166, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35765867

RESUMO

Walnut (Juglans regia L.) anthracnose, induced by Colletotrichum gloeosporioides, is a catastrophic disease impacting the walnut industry in China. Although WRKY transcription factors play a key role in plant immunity, the function of the WRKY gene family in walnut resistance to C. gloeosporioides is not clear. Here, through transcriptome sequencing and quantitative real-time polymerase chain reaction (qRT-PCR), we identified a differentially expressed gene, JrWRKY21, that was significantly upregulated upon C. gloeosporioides infection in walnut. JrWRKY21 positively regulated walnut resistance to C. gloeosporioides, as demonstrated by virus-induced gene silencing and transient gene overexpression. Additionally, JrWRKY21 directly interacted with the transcriptional activator of the pathogenesis-related (PR) gene JrPTI5L in vitro and in vivo, and could bind to the W-box in the JrPTI5L promoter for transcriptional activation. Moreover, JrPTI5L could induce the expression of the PR gene JrPR5L through binding to the GCCGAC motif in the promoter. Our data support that JrWRKY21 can indirectly activate the expression of the JrPR5L gene via the WRKY21-PTI5L protein complex to promote resistance against C. gloeosporioides in walnut. The results will enhance our understanding of the mechanism behind walnut disease resistance and facilitate the genetic improvement of walnut by molecular breeding for anthracnose-resistant varieties.


Assuntos
Colletotrichum , Juglans , Colletotrichum/genética , Resistência à Doença/genética , Juglans/genética , Doenças das Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Front Plant Sci ; 13: 847853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432418

RESUMO

Soil salinization is a major environmental problem that seriously threatens the sustainable development of regional ecosystems and local economies. Fraxinus velutina Torr. is an excellent salt-tolerant tree species, which is widely planted in the saline-alkaline soils in China. A growing body of evidence shows that microRNAs (miRNAs) play important roles in the defense response of plants to salt stress; however, how miRNAs in F. velutina exert anti-salt stress remains unclear. We previously identified two contrasting F. velutina cuttings clones, salt-tolerant (R7) and salt-sensitive (S4) and found that R7 exhibits higher salt tolerance than S4. To identify salt-responsive miRNAs and their target genes, the leaves and roots of R7 and S4 exposed to salt stress were subjected to miRNA and degradome sequencing analysis. The results showed that compared with S4, R7 showed 89 and 138 differentially expressed miRNAs in leaves and roots, respectively. Specifically, in R7 leaves, miR164d, miR171b/c, miR396a, and miR160g targeting NAC1, SCL22, GRF1, and ARF18, respectively, were involved in salt tolerance. In R7 roots, miR396a, miR156a/b, miR8175, miR319a/d, and miR393a targeting TGA2.3, SBP14, GR-RBP, TCP2/4, and TIR1, respectively, participated in salt stress responses. Taken together, the findings presented here revealed the key regulatory network of miRNAs in R7 responding to salt stress, thereby providing new insights into improving salt tolerance of F. velutina through miRNA manipulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...