Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(6): 1398-1417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38368631

RESUMO

Parasite-specific CD4+ Th1 cell responses are the predominant immune effector for controlling malaria infection; however, the underlying regulatory mechanisms remain largely unknown. This study demonstrated that ATG5 deficiency in myeloid cells can significantly inhibit the growth of rodent blood-stage malarial parasites by selectively enhancing parasite-specific CD4+ Th1 cell responses. This effect was independent of ATG5-mediated canonical and non-canonical autophagy. Mechanistically, ATG5 deficiency suppressed FAS-mediated apoptosis of LY6G- ITGAM/CD11b+ ADGRE1/F4/80- cells and subsequently increased CCL2/MCP-1 production in parasite-infected mice. LY6G- ITGAM+ ADGRE1- cell-derived CCL2 selectively interacted with CCR2 on CD4+ Th1 cells for their optimized responses through the JAK2-STAT4 pathway. The administration of recombinant CCL2 significantly promoted parasite-specific CD4+ Th1 responses and suppressed malaria infection. Conclusively, our study highlights the previously unrecognized role of ATG5 in modulating myeloid cells apoptosis and sequentially affecting CCL2 production, which selectively promotes CD4+ Th1 cell responses. Our findings provide new insights into the development of immune interventions and effective anti-malarial vaccines.Abbreviations: ATG5: autophagy related 5; CBA: cytometric bead array; CCL2/MCP-1: C-C motif chemokine ligand 2; IgG: immunoglobulin G; IL6: interleukin 6; IL10: interleukin 10; IL12: interleukin 12; MFI: mean fluorescence intensity; JAK2: Janus kinase 2; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; pRBCs: parasitized red blood cells; RUBCN: RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein; STAT4: signal transducer and activator of transcription 4; Th1: T helper 1 cell; Tfh: follicular helper cell; ULK1: unc-51 like kinase 1.


Assuntos
Proteína 5 Relacionada à Autofagia , Quimiocina CCL2 , Malária , Células Mieloides , Células Th1 , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Quimiocina CCL2/metabolismo , Células Th1/imunologia , Malária/imunologia , Malária/parasitologia , Camundongos , Células Mieloides/metabolismo , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Plasmodium berghei/imunologia
2.
Front Med (Lausanne) ; 10: 1190125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593406

RESUMO

Objective: This study aims to explore the efficiency and effectiveness of a body area network-based smart bracelet for trauma care prior to hospitalization. Methods: To test the efficacy of the bracelet, an observational cohort study was conducted on the clinical data of 140 trauma patients pre-admission to the hospital. This study was divided into an experimental group receiving smart bracelets and a control group receiving conventional treatment. Both groups were randomized using a random number table. The primary variables of this study were as follows: time to first administration of life-saving intervention, time to first administration of blood transfusion, time to first administration of hemostatic drugs, and mortality rates within 24 h and 28 days post-admission to the hospital. The secondary outcomes included the amount of time before trauma team activation and the overall length of patient stay in the emergency room. Results: The measurement results for both the emergency smart bracelet as well as traditional equipment showed high levels of consistency and accuracy. In terms of pre-hospital emergency life-saving intervention, there was no significant statistical difference in the mortality rates between both groups within 224 h post-admission to the hospital or after 28-days of treatment in the emergency department. Furthermore, the treatment efficiency for the group of patients wearing smart bracelets was significantly better than that of the control group with regard to both the primary and secondary outcomes of this study. These results indicate that this smart bracelet has the potential to improve the efficiency and effectiveness of trauma care and treatment. Conclusion: A body area network-based smart bracelet combined with remote 5G technology can assist the administration of emergency care to trauma patients prior to hospital admission, shorten the timeframe in which life-saving interventions are initiated, and allow for a quick trauma team response as well as increased efficiency upon administration of emergency care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...