Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077973

RESUMO

The study was conducted to evaluate the extruded and pelleting feed production on growth performance, intestinal histology and microbiome analysis of juvenile red swamp crayfish, Procambarus clarkii. Crayfish were fed either pelleted or extruded feeds that were made using the same formula. Crayfish fed extruded feed had a lower feed conversion ratio, as well as significantly higher levels of trypsin and amylase (p < 0.05) than those fed pelleted feed. However, other growth indices and the activity of lipase were not significantly influenced by the feed processing technique (p > 0.05). In comparison with the pelleted feed group, the lamina propria thickness of crayfish fed extruded feed was significantly lower (p < 0.05). Additionally, the abundance of intestinal microbiota in the extruded feed group was higher than that in the pelleted feed group. The dominant phyla in the intestine of both groups were Proteobacteria, Tenericutes, and Firmicutes, and the relative abundance of Proteobacteria in the extruded feed group was significantly higher than that in the pelleted feed group (p < 0.05). These results revealed that P. clarkii fed extruded feed had higher feed utilization and better intestinal health.

2.
Fish Physiol Biochem ; 43(2): 297-307, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27630021

RESUMO

This study was undertaken to explore the systemic metabolic strategies of juvenile grass carp (Ctenopharyngodon idellus) to maintain growth when fed with different dietary protein levels. The optimal growth group and two growing discomfort groups were selected through the basic data, to explain the growth difference from appetite regulation and lipid and glucose metabolism perspective. Three experimental diets were formulated with three dietary protein levels at 200.3, 296.1 and 442.9 g kg-1, named P1, P2 and P3, respectively. Juvenile grass carp (initial body weight 12.28 ± 0.14 g) were fed with three diets with 3 replications per dietary treatment in an indoor recirculation system for an 8-week feeding trial. Fish fed with diet P2 dietary group showed significantly higher WG, SGR, FI and PER than other groups. Compared with other groups, mRNA expressions of NPY, Y8a and Y8b in fish fed with P2 significantly down-regulated, while the expressions of CCK and CART in fish fed with P3 significantly down-regulated (P < 0.05). With increasing dietary protein levels, G6Pase, GK, PK and PEPCK were all significantly inhibited (P < 0.05). For lipid metabolism, the mRNA expression of ACC in P1 dietary group was significantly higher than P3 dietary group; besides, LPL expression in P3 group was significantly higher than other two groups (P < 0.05). PPARα expression in P2 was significantly lower than other groups (P < 0.05). These results suggested that grass carp fed with P2 (296.1 g kg-1 protein level) showed highest weight gain, contributed to more balanced nutrient metabolism and appetite regulation. Too high dietary protein (442.9 g kg-1) should be avoided because it induced lowest PER, body lipid and liver lipid, and inhibited glucose and lipid metabolism in juvenile grass carp.


Assuntos
Apetite , Carpas/metabolismo , Proteínas Alimentares/farmacologia , Glucose/metabolismo , Metabolismo dos Lipídeos , Animais , Encéfalo/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Neuropeptídeo Y/genética , Oligopeptídeos/genética
3.
Fish Physiol Biochem ; 42(6): 1557-1569, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27216495

RESUMO

This study aimed to evaluate the fat deposition pattern and lipid metabolic strategies of grass carp in response to dietary lipid levels. Five isonitrogenous diets (260 g kg-1 crude protein) containing five dietary lipid levels (0, 20, 40, 60, 80 g kg-1) were fed to quadruplicate groups of 15 fish with initial weight 200 g, for 8 weeks. The best growth performance and feed utilization was observed in fish fed with lipid level at 40 g kg-1. MFI and adipose tissue lipid content increased with increasing dietary lipid level up to 40 g kg-1, and higher lipid level in diet made no sense. Fish adapted to high lipid intake through integrated regulating mechanisms in several related tissues to maintain lipid homeostasis. In the present study, grass carp firstly increased PPARγ and CPT1 expressions in adipose tissue to elevate adipocyte differentiation and lipolysis to adapt to high lipid intake above 40 g kg-1. In liver, fish elevated hepatic lipid uptake but depressed biosynthesis of hepatic FAs, resulted in no difference in HSI and liver lipid content among the groups. Only in muscle, fish showed a significant fat deposition when the lipid intake above 40 g kg-1. The excess lipid, derived from enhanced serum TC and TG contents, was more likely to induce deposition in muscle rather than lipid uptake by adipose tissue in grass carp fed with high dietary lipid, indicating the muscle of grass carp might be the main responding organ to high lipid intake.


Assuntos
Carpas/metabolismo , Gorduras na Dieta/farmacologia , Tecido Adiposo/metabolismo , Animais , Carpas/crescimento & desenvolvimento , Ingestão de Alimentos , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...