Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626657

RESUMO

The timing of floral transition is essential for reproductive success in flowering plants. In sugarcane, flowering time affects the production of sugar and biomass. Although the function of the crucial floral pathway integrators, FLOWERING LOCUS T (FT), in sugarcane, has been uncovered, the proteins responsible for FT export and the underlying mechanism remain unexplored. In this study, we identified a member of the multiple C2 domain and transmembrane region proteins (MCTPs) family in sugarcane, FT-interacting protein 1 (ScFTIP1), which was localized to the endoplasmic reticulum. Ectopic expression of ScFTIP1 in the Arabidopsis mutant ftip1-1 rescued the late-flowering phenotype. ScFTIP1 interacted with AtFT in vitro and in vivo assays. Additionally, ScFTIP1 interacted with ScFT1 and the floral inducer ScFT3. Furthermore, we found that the NAC member, ScNAC23, could directly bind to the ScFTIP1 promoter and negatively regulate its transcription. Overall, our findings revealed the function of ScFTIP1 and proposed a potential mechanism underlying flowering regulation in sugarcane.


Assuntos
Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Saccharum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas
2.
Front Plant Sci ; 14: 1191449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304725

RESUMO

Introduction: Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results: In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion: Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.

3.
J Exp Bot ; 73(19): 6727-6743, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35986920

RESUMO

DELLA proteins are important repressors of gibberellin signaling, regulating plant development and defense responses through crosstalk with various phytohormones. Sugarcane ScGAI encodes a DELLA protein that regulates culm development. However, it is unclear which transcription factors mediate the transcription of ScGAI. Here, we identified two different ScGAI promoter sequences that cooperatively regulate ScGAI transcription. We also identified a nuclear-localized AP2 family transcription factor, ScAIL1, which inhibits the transcription of ScGAI by directly binding to two ScGAI promoters. ScAIL1 was expressed in all sugarcane tissues tested and was induced by gibberellin and various stressors, including NaCl, polyethylene glycol, and pathogenic fungi and bacteria. Overexpression of ScAIL1 in rice significantly improved resistance to bacterial blight and rice blast, while reducing growth and development. In addition, several genes associated with stress responses were significantly up-regulated in transgenic rice overexpressing ScAIL1. Endogenous phytohormone content and expression analysis further revealed that ScAIL1-overexpressing lines improved resistance to bacterial blight and rice blast instead of promoting growth, and that this response was associated with increased jasmonic acid synthesis and gibberellin inactivation. These results provide molecular evidence that the role of ScAIL1 in the plant defense response is related to jasmonic acid and gibberellin signaling.


Assuntos
Oryza , Saccharum , Giberelinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
J Exp Bot ; 73(11): 3462-3476, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35172001

RESUMO

The hormone gibberellin (GA) is crucial for internode elongation in sugarcane. DELLA proteins are critical negative regulators of the GA signaling pathway. ScGAI encodes a DELLA protein that was previously implicated in the regulation of sugarcane culm development. Here, we characterized ScGAI-like (ScGAIL) in sugarcane, which lacked the N-terminal region but was otherwise homologous to ScGAI. ScGAIL differed from ScGAI in its chromosomal location, expression patterns, and cellular localization. Although transgenic Arabidopsis overexpressing ScGAIL were insensitive to GAs, GA synthesis was affected in these plants, suggesting that ScGAIL disrupted the GA signaling pathway. After GA treatment, the expression patterns of GA-associated genes differed between ScGAIL-overexpressing and wild-type Arabidopsis, and the degradation of AtDELLA proteins in transgenic lines was significantly inhibited compared with wild-type lines. A sugarcane GID1 gene (ScGID1) encoding a putative GA receptor was isolated and interacted with ScGAIL in a GA-independent manner. Five ScGAIL-interacting proteins were verified by yeast two-hybrid assays, and only one interacted with ScGAI. Therefore, ScGAIL may inhibit plant growth by modulating the GA signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Transdução de Sinais/genética
5.
Plant Sci ; 304: 110806, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568306

RESUMO

Control of gene transcription is crucial to regulate plant growth and development events, such as flowering, leaf senescence, and seed germination. Here we identified a NAC transcription factor (ScNAC23) isolated from sugarcane (cv. ROC22). Analysis by qRT-PCR indicated that ScNAC23 expression was strongly induced in mature leaves and flowering varieties and was also responsive to exogenous treatment with the hormone gibberellin (GA). Ectopic expression of ScNAC23 in Arabidopsis accelerated bolting, flowering, and leaf senescence compared to wild type plants. Furthermore, Arabidopsis overexpressed ScNAC23 were more sensitive to GA than the wild type, and exogenous GA significantly accelerated flowering and senescence in the ScNAC23-overexpressed ones. A direct interaction between ScNAC23 and ScGAI, an inhibitor of GA signaling, was confirmed by yeast-two hybrid, bimolecular fluorescence complementation, and GST-pull down assay. The putative GA-ScNAC23-LFY/SAGs regulator module might provide a new sight into the molecular action of GA to accelerating flowering and leaf senescence in sugarcane.


Assuntos
Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Saccharum/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Envelhecimento , Arabidopsis , Clorofila/metabolismo , Clonagem Molecular , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Saccharum/genética , Saccharum/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...