Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171781, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508252

RESUMO

Replacing inorganic fertilizer with organic substrate contributes to sustainable agricultural production capacity. However, the effects of organic substitution regimes (OSR) on global crop productivity, soil carbon (C) and nitrogen (N) losses and biofertility as function of environmental variables have not been systematically quantified. Here, we have conducted a meta-analysis of these effects using field data (211 papers with 852 observations) collected around the world. Results indicated that OSR increased crop productivity (3.04 %) and soil biofertility (soil qMBC, qMBN, microbial richness, Shannon and functionality by 11.4 %, 21.1 %, 10.2 %, 3.95 %, and 38.5 %, respectively), and reduced soil N losses (N2O emissions, NH3 volatilization and soil N leaching by 26.5 %, 26.1 %, and 33.8 %, respectively), but increased CO2 emissions (19.4 %), and paddy fields CH4 emissions (41.2 %). N rate was an important factor influencing crop productivity and soil biofertility response to OSR, and crop productivity and soil biofertility had a greater positive response at moderate substitution rates in acid soil and long-term trials, but full substitution significantly decreased crop yield. Furthermore, the increase in soil biofertility and crop yield saturated in ~10-14 and ~ 22 years after organic substrate input. The emissions of CO2, CH4, and N2O significantly increased with increasing substitution rates, while the opposite was true for N leaching. The NH3 volatilization response to OSR presented a positive effect in acidic and coarse texture soil. OSR was more beneficial in mitigating soil C and N loss response (except CO2 emissions) in uplands compared to paddy fields. Therefore, implementation of OSR requires site-specific strategies to better achieve a balance between increasing crop production and reducing environmental benefits. Given that the OSR improvement varies depending on environmental variables, we propose a predictive model to initially assess the potential for OSR improvement. This study will provide scientific guidance on the reasonable application of organic substrate in agroecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...