Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 608(Pt 2): 1638-1651, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749138

RESUMO

Sacrifiers-promoted photocatalysis is a useful way to achieve high efficiency photoreduction and photocatalytic hydrogen production for photocatalysts of weak reductive power such as TiO2. Herein we report a new method to fabricate a unique dyadic hybrid consisting of closely compacted crystalline (anatase) and titanium glycerolate (TiG)-derived organic group-retained amorphous nanoparticles to validate adsorption-stored sacrifiers-promoted photocatalysis instead of using sacrifiers in bulk solution. It was found that ascorbic acid (AA)-modified TiG prepared at a small fraction of glycerol, characterized by peculiar cocoon/open nanocontainer-type morphologies, varieties of oxygen containing groups, and remarkably high specific surface area, is suitable for precursing such hybrids. AA can change crystallization processes and particle morphologies by terminating chain linkages in TiG structure, which increases porosity and brings about visible light responsive photocatalysis for the dyadic hybrid. Benefiting from good adsorption affinity to organic sacrifiers, the sacrifier-prestored hybrid can catalyze significantly enhanced photoreduction with good reproducibility toward dye molecules via the synergy of sacrifier enrichment and photocatalysis. AA modified TiG also exhibits good self-reducibility enabling pre-loading of highly dispersed and localized platinum nanoparticles, and the resulted dyadic hybrid facilitates photocatalytic hydrogen production of extremely higher turn-off frequency and better impurities interference-resistivity compared to the P25-based commercial catalyst.


Assuntos
Nanopartículas Metálicas , Titânio , Catálise , Fotólise , Platina , Reprodutibilidade dos Testes
2.
J Colloid Interface Sci ; 608(Pt 3): 2730-2739, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799046

RESUMO

Constructing highly efficient and cost-effective photocatalyst system has been a big challenge for photocatalysis. Herein, CdS nanosphere (N-CdS), hollow CdS (H-CdS) and a series of H-CdS@NiCoP core-shell nanospheres have been successfully prepared via a facile hydrothermal method. The activity test showed that H-CdS exhibited higher photocatalytic activity (3.34 mmol g-1h-1) compared with N-CdS (0.99 mmol g-1h-1) under visible light irradiation (λ ≥ 420 nm), suggesting that hollow structure could effectively improve photocatalytic activity. Moreover, the H-CdS@NiCoP-7 wt% displayed a maximum photocatalytic H2 evolution rate of 13.47 mmol g-1h-1, which was about 4 times and 2.5 times higher than that of pristine H-CdS and H-CdS@Pt-3 wt%, respectively. Furthermore, H-CdS@NiCoP-7 wt% exhibited a good stability during 20 h test. The physicochemical properties were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, PL and photoelectrochemical technique. The results showed that NiCoP addition can construct p-n junction with H-CdS and effectively promote the charge transfer from CdS to NiCoP, which improved the photocatalytic hydrogen evolution activity. This work revealed that NiCoP could react as an excellent co-catalyst for enhancing H-CdS photocatalytic activity.


Assuntos
Compostos de Cádmio , Nanosferas , Catálise , Hidrogênio , Luz
3.
ACS Omega ; 5(50): 32715-32723, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376909

RESUMO

It is highly important to develop efficient and cheap photocatalysts for hydrogen production. Herein, a series of p-n heterojunction Mn0.5Cd0.5S/CuCo2S4 has been successfully synthesized for the first time by the hydrothermal impregnation method. Mn0.5Cd0.5S/CuCo2S4 loading with 12 wt % CuCo2S4 shows the highest H2 evolution rate of 15.74 mmol h-1 g-1 under visible light (λ ≥ 420 nm) irradiation, which is about 3.15 and 15.28 times higher than that of bare Mn0.5Cd0.5S (4.99 mmol h-1 g-1) and CuCo2S4 (1.03 mmol h-1 g-1), respectively. In addition, it shows a relatively good stability during the five recycle tests, with about 20% loss of reaction rate compared to that of the first cycle. The superior photocatalytic performance is attributed to the effective separation and transfer of photogenerated charge carriers because of the formation of the p-n junction. The samples are systematically characterized by X-ray diffraction, ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, X-ray photoelectron spectroscopy, photoluminescence, EIS, and so on. UV-vis and EIS show that CuCo2S4 can effectively improve the visible light response of Mn0.5Cd0.5S/CuCo2S4 and promote the electron transfer from CuCo2S4 to the conduction band of Mn0.5Cd0.5S, so as to improve the photocatalytic efficiency. This study reveals that the p-n heterojunction Mn0.5Cd0.5S/CuCo2S4 is a promising photocatalyst to explore the photocatalysts without noble metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...