Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(36): 32884-32891, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720804

RESUMO

The analysis of performance degradation in lithium-ion batteries plays a crucial role in achieving accurate and efficient fault diagnosis as well as safety management. This paper proposes a method for studying the degradation pattern of lithium-ion batteries and establishing the structure-activity relationship between internal and external parameters by employing a lumped particle diffusion model. To simulate real-world operating conditions, a cycle life test was conducted with the constant current-constant voltage (CC-CV) charge mode and the discharge mode under New European Driving Cycle (NEDC) working condition. The test aimed to analyze the variations in the external macroscopic characteristic parameters of the battery. Building upon this analysis, a lumped particle diffusion model was constructed, and the model parameters were identified using the Levenberg-Marquardt (L-M) algorithm. Subsequently, the ohmic, activation, and concentration losses of the battery under different aging conditions were determined, revealing the internal state evolution during the degradation process of lithium-ion batteries. The findings indicate that the lumped particle diffusion model provides a comprehensive explanation of the internal mechanisms contributing to the performance degradation of lithium-ion batteries. Moreover, the proposed method offers a novel perspective for the real-time quantitative analysis of lithium-ion battery performance degradation.

2.
ACS Omega ; 7(21): 17797-17810, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664594

RESUMO

This paper proposes a revised variation disturbance method to provide valuable information and reference for fuel design or optimization of internal combustion engines to realize the comprehensive and quantitative evaluation of the effects of blending agents on the combustion performance of primary fuels. In this method, methanol and ethanol are blended into gasoline to form six kinds of alcohol-gasoline (E10, E20, E30, M10, M20, and M30). Then, the ignition delay, adiabatic flame temperature, component concentration, fuel-burning rate, extinction strain rate, and CO emission of gasoline and alcohol-gasoline are studied by system simulation in a wide range of operating conditions. Based on the new variation disturbance method, the effects of methanol and ethanol on the combustion performance of gasoline are next analyzed globally and characterized quantitatively. The comprehensive results of ethanol and methanol on the gasoline's combustion are visually presented. The method proposed in this paper is preliminarily validated based on the analysis of the microscopic mechanism of combustion. The results show that the blending of ethanol and methanol has positive effects on gasoline combustion, and ethanol can rapidly ignite the gasoline in a wide range of operating conditions and is superior to methanol in terms of fuel combustion, stability, and pollutant discharge. Based on the treatment of simulated values of six combustion characteristics selected in this paper and the calculations of the variation disturbance method, the total disturbance values of ethanol and methanol to gasoline combustion are obtained as 0.8493 and 0.2605, respectively. That is, ethanol has a more significant effect on improving the combustion performance of gasoline than methanol. In addition, based on the analysis results of the combustion, it is found that the blending of ethanol enlarges the reaction of notable components in gasoline. This finding also proves the effectiveness and validity of the scientific method utilized in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...