Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1291194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249348

RESUMO

Introduction: Carnosol exhibited ameliorating effects on muscle atrophy of mice developed cancer cachexia in our previous research. Method: Here, the ameliorating effects of carnosol on the C2C12 myotube atrophy result from simulated cancer cachexia injury, the conditioned medium of the C26 tumor cells or the LLC tumor cells, were observed. To clarify the mechanisms of carnosol, the possible direct target proteins of carnosol were searched using DARTS (drug affinity responsive target stability) assay and then confirmed using CETSA (cellular thermal shift assay). Furthermore, proteomic analysis was used to search its possible indirect target proteins by comparing the protein expression profiles of C2C12 myotubes under treatment of C26 medium, with or without the presence of carnosol. The signal network between the direct and indirect target proteins of carnosol was then constructed. Results: Our results showed that, Delta-1-pyrroline-5-carboxylate synthase (P5CS) might be the direct target protein of carnosol in myotubes. The influence of carnosol on amino acid metabolism downstream of P5CS was confirmed. Carnosol could upregulate the expression of proteins related to glutathione metabolism, anti-oxidant system, and heat shock response. Knockdown of P5CS could also ameliorate myotube atrophy and further enhance the ameliorating effects of carnosol. Discussion: These results suggested that carnosol might ameliorate cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways.

2.
J Cachexia Sarcopenia Muscle ; 13(6): 2724-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36085573

RESUMO

BACKGROUND: Atractylenolide I (AI) is a natural sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, known as Baizhu in traditional Chinese medicine. AI has been found to ameliorate cancer cachexia in clinic cancer patients and in tumour-bearing mice. Here, we checked the influence of AI on biogenesis of IL-6 and extracellular vesicles (EVs) in cancer cachexia mice and then focused on studying mechanisms of AI in inhibiting the production of tumour-derived EVs, which contribute to the ameliorating effects of AI on cancer cachexia. METHODS: C26 tumour-bearing BALB/c mice were applied as animal model to examine the effects of AI (25 mg/kg) in attenuating cachexia symptoms, serum IL-6 and EVs levels. IL-6 and EVs secretion of C26 tumour cells treated with AI (0.31-5 µM) was further observed in vitro. The in vitro cultured C2C12 myotubes and 3T3-L1 mature adipocytes were used to check the potency of conditioned medium of C26 cells treated with AI (0.625-5 µM) in inducing muscle atrophy and lipolysis. The glycolysis potency of C26 cells under AI (0.31-5 µM) treatment was evaluated by measuring the extracellular acidification rate using Seahorse XFe96 Analyser. Levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting to study the possible mechanisms. STAT3 overexpression or knockout C26 cells were also used to confirm the effects of AI (5 µM). RESULTS: AI ameliorated cancer cachexia symptoms (P < 0.05), improved grip strength (P < 0.05) and decreased serum EVs (P < 0.05) and IL-6 (P < 0.05) levels of C26 tumour-bearing mice. AI directly inhibited EVs biogenesis (P < 0.001) and IL-6 secretion (P < 0.01) of cultured C26 cells. The potency of C26 medium in inducing C2C12 myotube atrophy (+59.54%, P < 0.001) and 3T3-L1 adipocyte lipolysis (+20.73%, P < 0.05) was significantly attenuated when C26 cells were treated with AI. AI treatment inhibited aerobic glycolysis and the pathway of STAT3/PKM2/SNAP23 in C26 cells. Furthermore, overexpression of STAT3 partly antagonized the effects of AI in suppressing STAT3/PKM2/SNAP23 pathway, EVs secretion, glycolysis and the potency of C26 medium in inducing muscle atrophy and lipolysis, whereas knockout of STAT3 enhanced the inhibitory effect of AI on these values. The inhibition of AI on STAT3/PKM2/SNAP23 pathway was also observed in C26 tumour tissues. CONCLUSIONS: AI ameliorates cancer cachexia by decreasing the production of IL-6 and EVs of tumour cells. The decreasing effects of AI on EVs biogenesis are based on its inhibition on STAT3/PKM2/SNAP23 pathway.


Assuntos
Vesículas Extracelulares , Neoplasias , Camundongos , Animais , Interleucina-6 , Linhagem Celular Tumoral , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Atrofia Muscular/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Lactonas/farmacologia , Lactonas/uso terapêutico , Neoplasias/patologia
3.
Basic Clin Pharmacol Toxicol ; 131(6): 500-513, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150451

RESUMO

Cancer-derived exosomes are involved in the development of cancer cachexia. Carnosol, which exhibited ameliorating effects on cancer cachexia of C26 tumour-bearing mice in our previous study, alleviated atrophy of C2C12 myotubes induced by exosomes of C26 tumour cells in the present study. MiR-183-5p was found to be rich in C26 cells and C26 exosomes, and miR-183-5p mimic could directly induce atrophy of C2C12 myotubes. Carnosol at 5 to 20 µM could dose-dependently ameliorate the myotube atrophy induced by miR-183-5p. Four and a half LIM domain protein 1 (FHL1) was shown to be the direct target of miR-183-5p. Increase in myostatin, p-Smad3, MuRF-1, Atrogin-1, HIF-1α and p-STAT3 and decrease in mitochondrial respiration were also induced by miR-183-5p mimic in C2C12 myotubes. Carnosol could not affect the decrease in FHL-1 and the activation of STAT3 pathway but could significantly alleviate the increase in myostatin, p-Smad3, MuRF-1, Atrogin-1 and the decrease in mitochondrial respiration induced by miR-183-5p. The protective effects of carnosol on myotubes against atrophy of C2C12 myotubes induced by miR-183-5p, based on both its inhibiting effects on MuRF-1 and Atrogin-1-mediated protein degradation and its ability of keeping the mitochondrial respiration, might contribute to its ameliorating effects on cancer cachexia.


Assuntos
Abietanos , MicroRNAs , Fibras Musculares Esqueléticas , Neoplasias , Animais , Camundongos , Atrofia , Caquexia/etiologia , Caquexia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miostatina , Neoplasias/metabolismo , Abietanos/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...