Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 4(8): 677-685, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525077

RESUMO

Feeding animals more low-opportunity-cost feed products (LCFs), such as food waste and by-products, may decrease food-feed competition for cropland. Using a feed allocation optimization model that considers the availability of feed sources and animal requirements for protein and energy, we explored the perspectives of feeding more LCFs to animals in China. We found that about one-third of the animal feed consisted of human-edible products, while only 23% of the available LCFs were used as feed during 2009-2013. An increased utilization of LCFs (45-90 Mt) could potentially save 25-32% of feed-producing cropland area without impairing livestock productivity. Parallelly, about one-third of feed-related irrigation water, synthetic fertilizer and greenhouse gas emissions would be saved. Re-allocating the saved cropland could sustain the food energy demand of 30-185 million people. Achieving the potentials of increased LCF use requires improved technology and coordination among stakeholders.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Animais , Humanos , Meio Ambiente , Ração Animal/análise , China
2.
Glob Chang Biol ; 26(2): 888-900, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31495039

RESUMO

Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3 ), nitrous oxide (N2 O) and methane (CH4 ) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta-analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long-term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%-77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2 O emissions decreased. The SR did not significantly influence N2 O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2 O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2 O, but depending on site-specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.


Assuntos
Fertilizantes , Oryza , Agricultura , Animais , China , Produção Agrícola , Esterco , Nitrogênio , Óxido Nitroso , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...