Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1207518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389289

RESUMO

With the continuous change of global climate, the frequency of low-temperature stress (LTS) in spring increased greatly, which led to the increase of wheat yield decline. The effects of LTS at booting on grain starch synthesis and yield were examined in two wheat varieties with differing low-temperature sensitivities (insensitive variety Yannong 19 and sensitive variety Wanmai 52). A combination of potted and field planting was employed. For LTS treatment at booting, the wheat plants were placed in a climate chamber for 24 h at -2°C, 0°C or 2°C from 19:00 to 07:00 then 5°C from 07:00 to 19:00. They were then returned to the experimental field. The effects of flag leaf photosynthetic characteristics, the accumulation and distribution of photosynthetic products, enzyme activity related to starch synthesis and relative expression, the starch content, and grain yield were determined. LTS at booting caused a significant reduction in the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of the flag leaves at filling. The development of starch grains in the endosperm is also hindere, there are obvious equatorial grooves observed on the surface of the A-type starch granules, and a reduction in the number of B-type starch granules. The abundance of 13C in the flag leaves and grains decreased significantly. LTS also caused a significant reduction in translocation amount of pre-anthesis stored dry matte from vegetative organs to grains and amount of post-anthesis transfer of accumulated dry matte into grains, and the distribution rate of dry matter in the grains at maturity. The grain filling time was shortened, and the grain filling rate decreased. A decrease in the activity and relative expression of enzymes related to starch synthesis was also observed, with a decrease in the total starch content. As a result, a decrease in the grain number per panicle and 1000-grain weight were also observed. These findings highlight the underlying physiological cause of decreased starch content and grain weight after LTS in wheat.

2.
Phys Chem Chem Phys ; 25(8): 6424-6435, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779832

RESUMO

Nanowelding, self-healing and mechanical stabilities of conductive networks of Cu-Ag core-shell nanowires are of vital importance for their extensive applications. In this study, atomistic simulations are used to reveal the head-to-side cold welding behavior, ranging from the welding mechanism, mechanical stabilities of the obtained junction and effects of various conditions. The results show that head-to-side cold welding of Cu-Ag bimetallic nanowires can be excellently completed via atomic interaction and diffusion of atoms. Initial deformation in the junction induced in the welding process and welding temperature are proven to exert a significant influence on the mechanical stabilities of the obtained junction. Three different deformation mechanisms are proposed due to various motivations of dislocations. During the uniaxial tensile test of the junction, the plastic deformation map of initial deformation and welding temperature are expounded in detail. It is revealed that for all the involved welding temperatures explored in our study, the highest tensile strength always belongs to the T-junction with no initial deformation. Otherwise, the intersection will become a serious obstacle to a further process of plastic deformation and lead to abnormally larger elongation and lower strength. These findings are expected to provide an in-depth understanding of the deformation mechanism of bimetallic nanowires and provide valuable theoretical guidance for engineering applications.

3.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616128

RESUMO

A novel multifunctional material with efficient wicking and evaporative functionalities was fabricated using hierarchical surface nano-/microstructuring by femtosecond laser micromachining. The created material exhibits excellent multifunctional performance. Our experiments in a wind tunnel demonstrate its good wicking and evaporative functionalities under the conditions of high-temperature airflows. An important finding of this work is the significantly enhanced evaporation rate of the created material compared with the free water surface. The obtained results provide a platform for the practical implementation of Maisotsenko-cycle cooling technologies for substantially increasing efficiency in power generation, thermal management, and other evaporation-based technologies. The developed multifunctional material demonstrates long-lasting wicking and evaporative functionalities that are resistant to degradation under high-temperature airflows, indicating its suitability for practical applications.

4.
ACS Appl Mater Interfaces ; 14(1): 2219-2229, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962377

RESUMO

Plasmonic physical color generation, which mostly depends on selective absorption, creates unique colors by light transmission and scattering. Based on this, regulating plasmon and transparency with external stimulation is a promising approach for fabricating optical devices with enhanced visual displays; however, few studies have addressed the implementation of dual-optical modulation. In addition, developing a color response to environmental stimuli through the highly shape-sensitive plasmon depth modulation has long remained a significant challenge once the nanostructure is determined. Some stimulations also require high amounts of electricity, which can be costly. In this study, strategically designed hyaluronan-functionalized triangular silver nanoparticles (AgNPs) were embedded in polyvinyl alcohol-polyethylene nanofiber films to achieve a breakthrough in the moisture-responsive dual-optical modulation of the plasmonic color-Raman and transparency. Switchable colors that are reversible were induced in plasmon-resonance-modulation AgNPs via moisture stimulation, adjusting the expansion-tunable dielectric constant of hyaluronan-functionalized AgNPs and varying the electron density due to electron transfer. Furthermore, a moisture gradient was used to decrease the Raman scattering and increase the photoluminescence, which is a significant demonstration of smart-plasmonic evolution. This effect occurred due to the gradual transition from plasmon-driven photoluminescence quenching to photoluminescence enhancement as the interval of the Ag and hyaluronic acid molecules was increased. The transparency of the composite film was also dynamically regulated by turning moisture on/off. This occurred because of the significant difference in hygroscopic expansion between hyaluronan and the nanofibers, which generated a large variation in the total refractive index and caused changes in the surface roughness.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835727

RESUMO

An advanced superwicking aluminum material based on a microgroove surface structure textured with both laser-induced periodic surface structures and fine microholes was produced by direct femtosecond laser nano/microstructuring technology. The created material demonstrates excellent wicking performance in a temperature range of 23 to 120 °C. The experiments on wicking dynamics show a record-high velocity of water spreading that achieves about 450 mm/s at 23 °C and 320 mm/s at 120 °C when the spreading water undergoes intensive boiling. The lifetime of classic Washburn capillary flow dynamics shortens as the temperature increases up to 80 °C. The effects of evaporation and boiling on water spreading become significant above 80 °C, resulting in vanishing of Washburn's dynamics. Both the inertial and visco-inertial flow regimes are insignificantly affected by evaporation at temperatures below the boiling point of water. The boiling effect on the inertial regime is small at 120 °C; however, its effect on the visco-inertial regime is essential. The created material with effective wicking performance under water boiling conditions can find applications in Maisotsenko cycle (M-cycle) high-temperature heat/mass exchangers for enhancing power generation efficiency that is an important factor in reducing CO2 emissions and mitigation of the global climate change.

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915883

RESUMO

A superwicking Ti-6Al-4V alloy material with a hierarchical capillary surface structure was fabricated using femtosecond laser. The basic capillary surface structure is an array of micropillars/microholes. For enhancing its capillary action, the surface of the micropillars/microholes is additionally structured by regular fine microgrooves using a technique of laser-induced periodic surface structures (LIPSS), providing an extremely strong capillary action in a temperature range between 23 °C and 80 °C. Due to strong capillary action, a water drop quickly spreads in the wicking surface structure and forms a thin film over a large surface area, resulting in fast evaporation. The maximum water flow velocity after the acceleration stage is found to be 225-250 mm/s. In contrast to other metallic materials with surface capillarity produced by laser processing, the wicking performance of which quickly degrades with time, the wicking functionality of the material created here is long-lasting. Strong and long-lasting wicking properties make the created material suitable for a large variety of practical applications based on liquid-vapor phase change. Potential significant energy savings in air-conditioning and cooling data centers due to application of the material created here can contribute to mitigation of global warming.

7.
Nanomaterials (Basel) ; 10(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326234

RESUMO

Capillary flow of water in an array of open nanotextured microgrooves fabricated by femtosecond laser processing of silicon is studied as a function of temperature using high-speed video recording. In a temperature range of 23-80 °C, the produced wicking material provides extremely fast liquid flow with a maximum velocity of 37 cm/s in the initial spreading stage prior to visco-inertial regime. The capillary performance of the material enhances with increasing temperature in the inertial, visco-inertial, and partially in Washburn flow regimes. The classic universal Washburn's regime is observed at all studied temperatures, giving the evidence of its universality at high temperatures as well. The obtained results are of great significance for creating capillary materials for applications in cooling of electronics, energy harvesting, enhancing the critical heat flux of industrial boilers, and Maisotsenko cycle technologies.

8.
Opt Express ; 27(25): 36066-36074, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873393

RESUMO

A wicking Nylon 6 polymer material was produced through surface structuring by a direct femtosecond laser nano/microstructuring approach. The produced wicking structure is an array of parallel microgrooves, the surface of which is textured with irregular nanostructures and fine microstructures. High-speed imaging of water spreading vertically uphill against the gravity discloses a series of capillary flow regimes with h ∝ t, h ∝ t1/2, and h ∝ t1/3 scaling laws, where h is the height of capillary rise and t is the time. In the initial stage, the capillary flow occurs with a single front, from which at a certain time a precursor front forms and advances ahead of the main one. Our study shows that the onset of the precursor front occurs in h ∝ t flow regime. The created material exhibits excellent wicking properties and may find applications in various technologically important areas.

9.
Light Sci Appl ; 6(3): e16256, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30167238

RESUMO

Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-based optical imaging technique through which we capture, for the first time, the complete temporal and spatial evolution of the femtosecond laser-induced morphological surface structural dynamics of metals from start to finish, that is, from the initial transient surface fluctuations, through melting and ablation, to the end of resolidification. We find that transient surface structures first appear at a delay time on the order of 100 ps, which is attributed to ablation driven by pressure relaxation in the surface layer. The formation dynamics of the surface structures at different length scales are individually resolved, and the sequence of their appearance changes with laser fluence is found. Cooling and complete resolidification, observed here for the first time, are shown to occur more slowly than previously predicted by two orders of magnitude. We examine and identify the mechanisms driving each of these dynamic steps. The visualization and control of morphological surface structural dynamics not only are of fundamental importance for understanding femtosecond laser-induced material responses but also pave the way for the design of new material functionalities through surface structuring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...