Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108561, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144459

RESUMO

Hematopoietic stem cell (HSC) surface markers improve the understanding of cell identity and function. Here, we report that human HSCs can be distinguished by their expression of the CEA Cell Adhesion Molecule 5 (CEACAM5, CD66e), which serves as a marker and a regulator of HSC function. CD66e+ cells exhibited a 5.5-fold enrichment for functional long term HSCs compared to CD66e- cells. CD66e+CD34+CD90+CD45RA- cells displayed robust multi-lineage repopulation and serial reconstitution ability in immunodeficient mice compared to CD66e-CD34+CD90+CD45RA-cells. CD66e expression also identified almost all repopulating HSCs within the CD34+CD90+CD45RA- population. Together, these results indicated that CEACAM5 is a marker that enriches functional human hematopoietic stem cells capable of long-term multi-lineage engraftment.

4.
Cell Stem Cell ; 15(4): 488-497, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25280221

RESUMO

Conventional embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) derived from primates resemble mouse epiblast stem cells, raising an intriguing question regarding whether the naive pluripotent state resembling mouse embryonic stem cells (mESCs) exists in primates and how to capture it in vitro. Here we identified several specific signaling modulators that are sufficient to generate rhesus monkey fibroblast-derived iPSCs with the features of naive pluripotency in terms of growth properties, gene expression profiles, self-renewal signaling, X-reactivation, and the potential to generate cross-species chimeric embryos. Interestingly, together with recent reports of naive human pluripotent stem cells, our findings suggest several conserved signaling pathways shared with rodents and specific to primates, providing significant insights for acquiring naive pluripotency from other species. In addition, the derivation of rhesus monkey naive iPSCs also provides a valuable cell source for use in preclinical research and disease modeling.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Macaca mulatta/metabolismo , Animais , Quimera , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...