Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 542: 109204, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981322

RESUMO

The hexasaccharide arabinan domain of Mycobacterial Arabinogalactan was provided with the versatile methodology toward ß-selective arabinofuranosylation directed by B(C6F5)3, demonstrating the effectiveness of the ß-arabinofuranosylation strategy. Derivatization of the amino moiety at the reducing end are essential prerequisites for elucidating the biosynthetic pathway and conjugating of this compound to a protein carrier for vaccine generation.

2.
ACS Omega ; 9(10): 11969-11975, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497025

RESUMO

Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and ß-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.

3.
Pharmaceutics ; 15(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376063

RESUMO

ß-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that ß-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with ß-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of ß-glucan.

4.
Chem Biodivers ; 18(11): e2100341, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510699

RESUMO

Fifteen chalcone derivatives 3a-3o were synthesized, and evaluated as multifunctional agents against Alzheimer's disease. In vitro studies revealed that these compounds inhibited self-induced Aß1-42 aggregation effectively ranged from 45.9-94.5 % at 20 µM, and acted as potential antioxidants. Their structure-activity relationships were summarized. In particular, (2E)-3-[4-(dimethylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one (3g) exhibited an excellent inhibitory activity of 94.5 % at 20 µM, and it could disassemble the self-induced Aß1-42 aggregation fibrils with ratio of 57.1 % at 20 µM concentration. In addition, compound 3g displayed good chelating ability for Cu2+ , and could effectively inhibit and disaggregate Cu2+ -induced Aß aggregation. Moreover, compound 3g exerted low cytotoxicity, significantly reversed Aß1-42 -induced SH-SY5Y cell damage. More importantly, compound 3g remarkably ameliorated scopolamine-induced memory impairment in mice. In summary, all the results revealed compound 3g was a potential multifunctional agent for AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Chalconas/farmacologia , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Cobre/farmacologia , Humanos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Escopolamina , Células Tumorais Cultivadas
5.
Cancer Manag Res ; 10: 4735-4745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425570

RESUMO

OBJECTIVE: microRNAs are regulatory molecules regarded as important in the pathogenesis of different types of tumors. microRNA-216a (miR-216a-5p) has been identified as a tumor suppressor in multiple malignancies. However, the role of miR-216a-5p in the pathogenesis of small cell lung cancer (SCLC) remains obscure. The objective of this study was to investigate the role of the miR-216a-5p/Bcl-2 axis in SCLC pathogenesis. MATERIALS AND METHODS: All the experimental methods used were as follows: microarray analysis, cell culture, transient, and stable gene transfection; real-time fluorescence PCR; Western blot; flow cytometry for cell cycle analysis; in vitro proliferation assay; in vitro wound healing experiment; in vivo xenograft model in nude mice; and dual luciferase reporter assay. All statistical analyses were carried out using GraphPad Prism 7 software. Statistical significance was analyzed by Student's t-test or one-way ANOVA. P <0.05 (typically compared with the negative control group) was considered as significant and is marked with an asterisk in the figures. RESULTS: In this study, we observed that miR-216a-5p is downregulated in SCLC cell lines compared to that in the normal human bronchial epithelial cell line 16-HBE. In vitro and in vivo experiments demonstrate that upregulation of miR-216a-5p significantly decreased cell growth and migration and its downregulation increased SCLC cell proliferation and migration and influenced the cell cycle. Using bioinformatics analyses, we predicted that the important antiapoptotic gene Bcl-2 is targeted by miR-216a-5p, and we identified a functional miR-216a-5p binding site in the 3'-UTR of Bcl-2 using luciferase reporter assay. Furthermore, we determined that suppression of miR-216a-5p modulated the expression of Bcl-2, Bax, and Bad proteins (Bcl-2 family proteins), while Bcl-2 knockdown abrogated the effect of miR-216a-5p downregulation on cell proliferation, cell migration, and the cell cycle. CONCLUSION: Taken together, these findings suggest that miR-216a-5p regulates SCLC biology via Bcl-2 family proteins. Therefore, our study highlights the role of the miR-216a-5p/Bcl-2 axis in SCLC pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...