Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(12): e2211165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708103

RESUMO

Atmospheric water is ubiquitous on earth and extensively participates in the natural water cycle through evaporation and condensation. This process involves tremendous energy exchange with the environment, but very little of the energy has so far been harnessed. The recently emerged hydrovoltaic technology, especially moisture-induced electricity, shows great potential in harvesting energy from atmospheric water and gives birth to moisture energy harvesting devices. The device performance, especially the long-term operational capacity, has been significantly enhanced over the past few years. Further development; however, requires in-depth understanding of mechanisms, innovative materials, and ingenious system designs. In this review, beginning with describing the basic properties of water, the key aspects of the water-hygroscopic material interactions and mechanisms of power generation are discussed. The current material systems and advances in promising material development are then summarized. Aiming at the chief bottlenecks of limited operational time, advanced system designs that are helpful to improve device performance are listed. Especially, the synergistic effect of moisture adsorption and water evaporation on material and system levels to accomplish sustained electricity generation is discussed. Last, the remaining challenges are analyzed and future directions for developing this promising technology are suggested.

2.
Langmuir ; 39(26): 9246-9252, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37352469

RESUMO

The sliding of liquid drops over solid surfaces is a common phenomenon in nature and crucial in a variety of technological applications. Frictional dissipation along the contact line and viscous dissipation has long been regarded to dominate drop sliding. However, the ubiquitous solid-liquid interface charge transfer has received little attention. In this study, we systematically investigated the interfacial charge transfer between water drops and polarized poly(vinylidene fluoride) (ferroelectric insulator) surfaces and the effects of surface charge on static friction resistances acting on water drops. It is found that static friction resistance, reflected by the corresponding critical sliding angle, has a fourth-order function dependence on the surface potential as revealed by experiments and theoretical modeling. Interfacial charge transfer could either strengthen or weaken the surface potential up to the charge density carried by the water drops and substrates, thus resulting in the change of static friction resistance during sequential drop sliding. These findings apply to generalized problems for water at solid surfaces with charged interfaces (water, solid, or both are charged) and highlight the pivotal role of charge transfer at liquid-solid interfaces in governing drop motion.

3.
Natl Sci Rev ; 9(7): nwab169, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967588

RESUMO

Direct synthesis of high-quality graphene on dielectric substrates without a transfer process is of vital importance for a variety of applications. Current strategies for boosting high-quality graphene growth, such as remote metal catalyzation, are limited by poor performance with respect to the release of metal catalysts and hence suffer from a problem with metal residues. Herein, we report an effective approach that utilizes a metal-containing species, copper acetate, to continuously supply copper clusters in a gaseous form to aid transfer-free growth of graphene over a wafer scale. The thus-derived graphene films were found to show reduced multilayer density and improved electrical performance and exhibited a carrier mobility of 8500 cm2 V-1 s-1. Furthermore, droplet-based hydrovoltaic electricity generator devices based on directly grown graphene were found to exhibit robust voltage output and long cyclic stability, in stark contrast to their counterparts based on transferred graphene, demonstrating the potential for emerging energy harvesting applications. The work presented here offers a promising solution to organize the metal catalytic booster toward transfer-free synthesis of high-quality graphene and enable smart energy generation.

4.
Nat Commun ; 13(1): 3643, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752621

RESUMO

Generating sustainable electricity from ambient humidity and natural evaporation has attracted tremendous interest recently as it requires no extra mechanical energy input and is deployable across all weather and geography conditions. Here, we present a device prototype for enhanced power generation from ambient humidity. This prototype uses both heterogenous materials assembled from a LiCl-loaded cellulon paper to facilitate moisture adsorption and a carbon-black-loaded cellulon paper to promote water evaporation. Exposing such a centimeter-sized device to ambient humidity can produce voltages of around 0.78 V and a current of around 7.5 µA, both of which can be sustained for more than 10 days. The enhanced electric output and durability are due to the continuous water flow that is directed by evaporation through numerous, negatively charged channels within the cellulon papers. The voltage and current exhibit an excellent scaling behavior upon device integration to sufficiently power commercial devices including even cell phones. The results open a promising prospect of sustainable electricity generation based on a synergy between spontaneous moisture adsorption and water evaporation.

5.
Chem Soc Rev ; 51(12): 4902-4927, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35638386

RESUMO

Water is a colossal reservoir of clean energy as it adsorbs thirty-five percent of solar energy reaching the Earth's surface. More than half of the adsorbed energy turns into latent heat for water evaporation, driving the water cycle of the Earth.1 Yet, only very limited energy in the water cycle is harvested by current industrial technologies. The past decade has witnessed the emergence of hydrovoltaic technology, which generates electricity from nanomaterials by direct interaction with water and enables energy harvesting from the water cycle such as from rain, waves, flows, moisture and natural evaporation. Years of efforts have been committed to improve the conversion efficiency of hydrovoltaic devices through chemical synthesis of advanced nanomaterials and innovative design of device structures. Further development of this field, however, still requires in-depth understanding of hydrovoltaic mechanisms and boosting of the electrical outputs for wider applications. Here, we present a tutorial review of different mechanisms of generating electricity from droplets, flows, natural evaporation and ambient moisture by analyzing basic interactions at various water-material interfaces. Key aspects in raising the output power of hydrovoltaic devices are then discussed in terms of material synthesis, structural design, and device optimization. We also provide an outlook on the potential applications of this technology ranging from sensors, power suppliers to multifunctional systems as well as on the scientific and technological challenges in transforming its potential into practical utility. The prospects of this emerging field are considered for future endeavor.


Assuntos
Nanoestruturas , Energia Solar , Eletricidade , Nanoestruturas/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...