Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(9): 6248-56, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24734929

RESUMO

Nanomaterials (NMs) such as titanium dioxide (nano-TiO2) and hydroxyapatite (nano-HA) are widely used in food, personal care, and many household products. Due to their extensive usage, the risk of human exposure is increased and may trigger NMs specific biological outcomes as the NMs interface with the cells. However, the interaction of nano-TiO2 and nano-HA with cells, their uptake and subcellular distribution, and the cytotoxic effects are poorly understood. Herein, we characterized and examined the cellular internalization, inflammatory response and cytotoxic effects of nano-TiO2 and nano-HA using TR146 human oral buccal epithelial cells as an in vitro model. We showed both types of NMs were able to bind to the cellular membrane and passage into the cells in a dose dependent manner. Strikingly, both types of NMs exhibited distinct subcellular distribution profile with nano-HA displaying a higher preference to accumulate near the cell membrane compared to nano-TiO2. Exposure to both types of NMs caused an elevated reactive oxygen species (ROS) level and expression of inflammatory transcripts with increasing NMs concentration. Although cells treated with nano-HA induces minimal apoptosis, nano-TiO2 treated samples displayed approximately 28% early apoptosis after 24 h of NMs exposure. We further showed that nano-TiO2 mediated cell death is independent of the classical p53-Bax apoptosis pathway. Our findings provided insights into the potential cellular fates of human oral epithelial cells as they interface with industrial grade nano-HA and nano-TiO2.


Assuntos
Apoptose/efeitos dos fármacos , Durapatita/química , Nanopartículas Metálicas , Mucosa Bucal/efeitos dos fármacos , Titânio/química , Humanos , Microscopia Eletrônica de Transmissão , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Titânio/farmacologia
2.
Nano Lett ; 14(1): 83-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24313755

RESUMO

Nanoparticles can have profound effects on cell biology. Here, we show that after TiO2, SiO2, and hydroxyapatite nanoparticles treatment, TR146 epithelial cell sheet displayed slower migration. Cells after exposure to the nanoparticles showed increased cell contractility with significantly impaired wound healing capability however without any apparent cytotoxicity. We showed the mechanism is through nanoparticle-mediated massive disruption of the intracellular microtubule assembly, thereby triggering a positive feedback that promoted stronger substrate adhesions thus leading to limited cell motility.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Mucosa Bucal/citologia , Mucosa Bucal/fisiologia , Nanopartículas/administração & dosagem , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , Teste de Materiais , Mucosa Bucal/efeitos dos fármacos , Resistência à Tração/fisiologia
3.
J Med Chem ; 55(17): 7571-82, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22876932

RESUMO

Platinum(II) anticancer drug cisplatin is one of the most important chemotherapeutic agents in clinical use but is limited by its high toxicity and severe side effects. Platinum(IV) anticancer prodrugs can overcome these limitations by resisting premature aquation and binding to essential plasma proteins. Structure-activity relationship studies revealed a link between the efficacy of platinum(IV) complexes with the nature of their axial ligands, which can be modified to enhance the properties of the prodrug. The existing paradigm of employing platinum(IV) complexes with symmetrical axial carboxylate ligands does not fully exploit their vast potential. A new approach was conceived to control properties of platinum(IV) prodrugs using contrasting axial ligands via sequential acylation. We report a novel class of asymmetric platinum(IV) carboxylates based on the cisplatin template containing both hydrophilic and lipophilic ligands on the same scaffold designed to improve their aqueous properties and enhance their efficacy against cancer cells in vitro.


Assuntos
Antineoplásicos/farmacologia , Platina/farmacologia , Acilação , Antineoplásicos/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Platina/química , Solubilidade , Espectrometria de Massas por Ionização por Electrospray
4.
Mar Drugs ; 10(5): 1126-1137, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22822361

RESUMO

Lagunamides A (1) and B (2) are potent cytotoxic cyclic depsipeptides isolated from the filamentous marine cyanobacterium, Lyngbya majuscula, from Pulau Hantu, Singapore. These compounds are structurally related to the aurilide-class of molecules, which have been reported to possess exquisite antiproliferative activities against cancer cells. The present study presents preliminary findings on the selectivity of lagunamides against various cancer cell lines as well as their mechanism of action by studying their effects on programmed cell death or apoptosis. Lagunamide A exhibited a selective growth inhibitory activity against a panel of cancer cell lines, including P388, A549, PC3, HCT8, and SK-OV3 cells, with IC50 values ranging from 1.6 nM to 6.4 nM. Morphological studies showed blebbing at the surface of cancer cells as well as cell shrinkage accompanied by loss of contact with the substratum and neighboring cells. Biochemical studies using HCT8 and MCF7 cancer cells suggested that the cytotoxic effect of 1 and 2 might act via induction of mitochondrial mediated apoptosis. Data presented in this study warrants further investigation on the mode of action and underscores the importance of the lagunamides as potential anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cianobactérias/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacologia , Apoptose/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Singapura
5.
Mol Biol Rep ; 39(7): 7695-703, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22350264

RESUMO

Understanding migration of cells has many implications in human physiology; some examples include developmental biology, healing, immune responses and tissue remodeling. On the other hand, invasive migration by tumor cells is pathological and is a major cause of mortality amongst cancer sufferers. Cell migration assays have been widely used to quantify potentially metastatic genes. In recent years, the use of RNAi has significantly increased the tools available in cell migration research due to its specific gene targeting for knockdown. The inability to ensure 100% transfection/transduction efficiency reduces the sensitivity of cell migration assays because cells not successfully transfected/transduced with the RNAi are also included in the calculations. This study introduces a different experimental setup mathematically expressed in our named normalized relative infected cell count (N-RICC) that analyses cell migration assays by co-expressing retrovirally transduced shRNA with fluorescence tags from a single vector. Vectors transduced into cells are visible under fluorescence, thus alleviating the problems involved with transduction efficiency by individually identifying cells with targeted genes. Designed shRNAs were targeted against a list of potentially metastatic genes in a highly migratory breast cancer cell line model, MDA-MB-231. We have successfully applied N-RICC analysis to show greater sensitivity of integrin alpha5 (ITGA5) and Ras homologue A (RhoA) in cell metastasis over conventional methods in scratch-wound assays and migration chambers assays.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Integrina alfa5/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , RNA Interferente Pequeno/genética , Proteína rhoA de Ligação ao GTP/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Interferência de RNA , Proteína Vermelha Fluorescente
6.
PLoS One ; 6(11): e26879, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073214

RESUMO

In Drosophila, dopaminergic (DA) neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f) mutations of genes of the apical complex proteins in the asymmetric cell division (ACD) machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.


Assuntos
Divisão Celular , Dopamina/metabolismo , Drosophila/citologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Animais , Drosophila/embriologia , Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Neurogênese , RNA Interferente Pequeno , Receptores Notch/genética
7.
Biomaterials ; 32(32): 8218-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21807406

RESUMO

In this paper, we explored how ZnO nanoparticles cross-interact with a critical tumor suppressive pathway centered around p53, which is one of the most important known tumor suppressors that protects cells from developing cancer phenotypes through its control over major pathways like apoptosis, senescence and cell cycle progression. We showed that the p53 pathway was activated in BJ cells (skin fibroblasts) upon ZnO nanoparticles treatment with a concomitant decrease in cell numbers. This suggests that cellular responses like apoptosis in the presence of ZnO nanoparticles require p53 as the molecular master switch towards programmed cell death. This also suggests that in cells without robust p53, protective response can be tipped towards carcinogenesis when stimulated by DNA damage inducing agents like ZnO nanoparticles. We observed this precarious tendency in the same BJ cells with p53 knocked down using endogeneous expressing shRNA. These p53 knocked down BJ cells became more resistant to ZnO nanoparticles induced cell death and increased cell progression. Collectively, our results suggest that cellular response towards specific nanoparticle induced cell toxicity and carcinogenesis is not only dependent on specific nanoparticle properties but also (perhaps more importantly) the endogenous genetic, transcriptomic and proteomic landscape of the target cells.


Assuntos
Dano ao DNA , Nanopartículas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Óxido de Zinco/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Mutagênicos/toxicidade , Nanopartículas/ultraestrutura
8.
Dev Biol ; 336(2): 156-68, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19782677

RESUMO

The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Desintegrinas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas de Membrana/fisiologia , Metaloendopeptidases/fisiologia , Neurônios/citologia , Receptores Notch/fisiologia , Animais , Sequência de Bases , Linhagem da Célula , Proteínas do Citoesqueleto/genética , Primers do DNA , Desintegrinas/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Reação em Cadeia da Polimerase , Receptores Notch/genética , Transdução de Sinais
9.
J Cell Physiol ; 214(3): 796-809, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17849448

RESUMO

Telomeres and telomerase appear to participate in the repair of broken DNA ends produced by oxidative damage. Arsenite is an environmental contaminant and a potent human carcinogen, which induces oxidative stress on cells via the generation of reactive oxygen species affecting cell viability and chromosome stability. It promotes telomere attrition and reduces cell survival by apoptosis. In this study, we used mouse embryonic fibroblasts (MEFs) from mice lacking telomerase RNA component (mTERC(-/-) mice) with long (early passage or EP) and short (late passage or LP) telomeres to investigate the extent of oxidative damage by comparing the differences in DNA damage, chromosome instability, and cell survival at 24 and 48 h of exposure to sodium arsenite (As3+; NaAsO2). There was significantly high level of DNA damage in mTERC(-/-) cells with short telomeres as determined by alkaline comet assay. Consistent with elevated DNA damage, increased micronuclei (MN) induction reflecting gross genomic instability was also observed. Fluorescence in situ hybridization (FISH) analysis revealed that increasing doses of arsenite augmented the chromosome aberrations, which contributes to genomic instability leading to possibly apoptotic cell death and cell cycle arrest. Microarray analysis has revealed that As3+ treatment altered the expression of 456 genes of which 20% of them have known functions in cell cycle and DNA damage signaling and response, cell growth, and/or maintenance. Results from our studies imply that short dysfunctional telomeres impair the repair of oxidative damage caused by arsenite. The results will have implications in risk estimation as well as cancer chemotherapy.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Telômero/patologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Instabilidade Cromossômica/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Ensaio Cometa , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/citologia , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Camundongos , Análise em Microsséries , Micronúcleos com Defeito Cromossômico , RNA/metabolismo , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...