Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Med Syst ; 48(1): 67, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028354

RESUMO

Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a dataset of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular conditions were addressed with secondary analysis. The study's raw ECG DLM achieved area under the curve (AUC) values of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% CI: 1.74-2.10), CVD mortality (HR: 3.53, 95% CI: 2.73-4.57), and new-onset adverse cardiovascular events. External validation confirmed the model's accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.


Assuntos
Doenças Cardiovasculares , Aprendizado Profundo , Eletrocardiografia , Marca-Passo Artificial , Humanos , Eletrocardiografia/métodos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Inteligência Artificial , Síndrome do Nó Sinusal
2.
Radiology ; 311(3): e231937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38916510

RESUMO

Background Diagnosing osteoporosis is challenging due to its often asymptomatic presentation, which highlights the importance of providing screening for high-risk populations. Purpose To evaluate the effectiveness of dual-energy x-ray absorptiometry (DXA) screening in high-risk patients with osteoporosis identified by an artificial intelligence (AI) model using chest radiographs. Materials and Methods This randomized controlled trial conducted at an academic medical center included participants 40 years of age or older who had undergone chest radiography between January and December 2022 without a history of DXA examination. High-risk participants identified with the AI-enabled chest radiographs were randomly allocated to either a screening group, which was offered fully reimbursed DXA examinations between January and June 2023, or a control group, which received usual care, defined as DXA examination by a physician or patient on their own initiative without AI intervention. A logistic regression was used to test the difference in the primary outcome, new-onset osteoporosis, between the screening and control groups. Results Of the 40 658 enrolled participants, 4912 (12.1%) were identified by the AI model as high risk, with 2456 assigned to the screening group (mean age, 71.8 years ± 11.5 [SD]; 1909 female) and 2456 assigned to the control group (mean age, 72.1 years ± 11.8; 1872 female). A total of 315 of 2456 (12.8%) participants in the screening group underwent fully reimbursed DXA, and 237 of 315 (75.2%) were identified with new-onset osteoporosis. After including DXA results by means of usual care in both screening and control groups, the screening group exhibited higher rates of osteoporosis detection (272 of 2456 [11.1%] vs 27 of 2456 [1.1%]; odds ratio [OR], 11.2 [95% CI: 7.5, 16.7]; P < .001) compared with the control group. The ORs of osteoporosis diagnosis were increased in screening group participants who did not meet formalized criteria for DXA compared with those who did (OR, 23.2 [95% CI: 10.2, 53.1] vs OR, 8.0 [95% CI: 5.0, 12.6]; interactive P = .03). Conclusion Providing DXA screening to a high-risk group identified with AI-enabled chest radiographs can effectively diagnose more patients with osteoporosis. Clinical trial registration no. NCT05721157 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Smith and Rothenberg in this issue.


Assuntos
Absorciometria de Fóton , Redes Neurais de Computação , Osteoporose , Radiografia Torácica , Humanos , Feminino , Osteoporose/diagnóstico por imagem , Masculino , Radiografia Torácica/métodos , Absorciometria de Fóton/métodos , Idoso , Programas de Rastreamento/métodos , Pessoa de Meia-Idade
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124641, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878724

RESUMO

Xylitol, as a typical polyol, has a broad range of application prospects. However, the molecular states of xylitol under different environments are rarely reported until now. In this work, the state changes of xylitol molecules under high pressure were analyzed by Raman spectra. A Fermi resonance phenomenon in the fundamental mode of xylitol at 2945 (±0.06) cm-1 and 2955 (±0.41) cm-1 was observed at 0.99 GPa. The Fermi doublets possess the same symmetry and close energy levels, which had not been changed by pressures. However, the high pressure shortened the atomic distances and applied the extra disturbance, providing the necessary conditions for energy transfer. Besides, the Fermi doublets decoupling happened at 4 GPa due to the breaking of hydrogen bonding. This work provides an important reference for studying molecular states and weak interactions of polyols under high pressures.

4.
Aging (Albany NY) ; 16(10): 8717-8731, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761181

RESUMO

BACKGROUND: Valvular heart disease (VHD) is becoming increasingly important to manage the risk of future complications. Electrocardiographic (ECG) changes may be related to multiple VHDs, and (AI)-enabled ECG has been able to detect some VHDs. We aimed to develop five deep learning models (DLMs) to identify aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation. METHODS: Between 2010 and 2021, 77,047 patients with echocardiography and 12-lead ECG performed within 7 days were identified from an academic medical center to provide DLM development (122,728 ECGs), and internal validation (7,637 ECGs). Additional 11,800 patients from a community hospital were identified to external validation. The ECGs were classified as with or without moderate-to-severe VHDs according to transthoracic echocardiography (TTE) records, and we also collected the other echocardiographic data and follow-up TTE records to identify new-onset valvular heart diseases. RESULTS: AI-ECG adjusted for age and sex achieved areas under the curves (AUCs) of >0.84, >0.80, >0.77, >0.83, and >0.81 for detecting aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation, respectively. Since predictions of each DLM shared similar components of ECG rhythms, the positive findings of each DLM were highly correlated with other valvular heart diseases. Of note, a total of 37.5-51.7% of false-positive predictions had at least one significant echocardiographic finding, which may lead to a significantly higher risk of future moderate-to-severe VHDs in patients with initially minimal-to-mild VHDs. CONCLUSION: AI-ECG may be used as a large-scale screening tool for detecting VHDs and a basis to undergo an echocardiography.


Assuntos
Inteligência Artificial , Eletrocardiografia , Doenças das Valvas Cardíacas , Humanos , Eletrocardiografia/métodos , Feminino , Masculino , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/fisiopatologia , Idoso , Pessoa de Meia-Idade , Aprendizado Profundo , Ecocardiografia , Idoso de 80 Anos ou mais
5.
Nat Med ; 30(5): 1461-1470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684860

RESUMO

The early identification of vulnerable patients has the potential to improve outcomes but poses a substantial challenge in clinical practice. This study evaluated the ability of an artificial intelligence (AI)-enabled electrocardiogram (ECG) to identify hospitalized patients with a high risk of mortality in a multisite randomized controlled trial involving 39 physicians and 15,965 patients. The AI-ECG alert intervention included an AI report and warning messages delivered to the physicians, flagging patients predicted to be at high risk of mortality. The trial met its primary outcome, finding that implementation of the AI-ECG alert was associated with a significant reduction in all-cause mortality within 90 days: 3.6% patients in the intervention group died within 90 days, compared to 4.3% in the control group (4.3%) (hazard ratio (HR) = 0.83, 95% confidence interval (CI) = 0.70-0.99). A prespecified analysis showed that reduction in all-cause mortality associated with the AI-ECG alert was observed primarily in patients with high-risk ECGs (HR = 0.69, 95% CI = 0.53-0.90). In analyses of secondary outcomes, patients in the intervention group with high-risk ECGs received increased levels of intensive care compared to the control group; for the high-risk ECG group of patients, implementation of the AI-ECG alert was associated with a significant reduction in the risk of cardiac death (0.2% in the intervention arm versus 2.4% in the control arm, HR = 0.07, 95% CI = 0.01-0.56). While the precise means by which implementation of the AI-ECG alert led to decreased mortality are to be fully elucidated, these results indicate that such implementation assists in the detection of high-risk patients, prompting timely clinical care and reducing mortality. ClinicalTrials.gov registration: NCT05118035 .


Assuntos
Inteligência Artificial , Eletrocardiografia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564637

RESUMO

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

7.
Appl Opt ; 63(9): 2279-2285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568583

RESUMO

The stratum corneum of the outermost skin is an important barrier impeding transdermal permeation, and permeation enhancers can reduce the barrier resistance of the stratum corneum and enhance the permeation of drugs in tissues. The optical imaging depth, signal intensity, and scattering coefficient variation rules of skin tissues in time dimension are obtained by using optical coherence tomography (OCT). The effect of optical clearing agents (OCAs) on OCT imaging is obtained by quantitatively analyzing the changes in the optical properties of tissues. D-fructose, one of the monosaccharides, and sucrose, one of the disaccharides, were selected for the ex vivo optical clearing experiments on pig skin tissues utilizing the dimethyl sulfoxide (DMSO) carrier effect. We find that DMSO synergized with sugars applied to skin tissue has a more significant increase in the optical imaging depth and signal intensity, and a reduction in the scattering coefficient with an increasing concentration of DMSO. DMSO with a high concentration and D-fructose with saturated concentration (10:1; v/v) effectively reduce light attenuation in OCT imaging and improve the image quality. This operation will also shorten the application time to minimize skin damage from hyperosmotic agents.


Assuntos
Açúcares , Tomografia de Coerência Óptica , Animais , Suínos , Dimetil Sulfóxido/farmacologia , Pele , Frutose
8.
Nano Lett ; 24(15): 4439-4446, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38498723

RESUMO

Graphitic carbon nitrides (g-C3N4) as low-cost, chemically stable, and ecofriendly layered semiconductors have attracted rapidly growing interest in optoelectronics and photocatalysis. However, the nature of photoexcited carriers in g-C3N4 is still controversial, and an independent charge-carrier picture based on the band theory is commonly adopted. Here, by performing transient spectroscopy studies, we show characteristics of self-trapped excitons (STEs) in g-C3N4 nanosheets including broad trapped exciton-induced absorption, picosecond exciton trapping without saturation at high photoexcitation density, and transient STE-induced stimulated emissions. These features, together with the ultrafast exciton trapping polarization memory, strongly suggest that STEs intrinsically define the nature of the photoexcited states in g-C3N4. These observations provide new insights into the fundamental photophysics of carbon nitrides, which may enlighten novel designs to boost energy conversion efficiency.

9.
J Am Chem Soc ; 146(10): 6409-6421, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412558

RESUMO

Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.

10.
Nanomicro Lett ; 16(1): 89, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227269

RESUMO

Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC-V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC-V exhibits an optimal NH3 yield of 28.4 µg h-1 mgcat-1 with an excellent FE of 15.57% at - 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h-1 mg-1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.

11.
J Med Syst ; 48(1): 12, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217829

RESUMO

A deep learning model was developed to identify osteoporosis from chest X-ray (CXR) features with high accuracy in internal and external validation. It has significant prognostic implications, identifying individuals at higher risk of all-cause mortality. This Artificial Intelligence (AI)-enabled CXR strategy may function as an early detection screening tool for osteoporosis. The aim of this study was to develop a deep learning model (DLM) to identify osteoporosis via CXR features and investigate the performance and clinical implications. This study collected 48,353 CXRs with the corresponding T score according to Dual energy X-ray Absorptiometry (DXA) from the academic medical center. Among these, 35,633 CXRs were used to identify CXR- Osteoporosis (CXR-OP). Another 12,720 CXRs were used to validate the performance, which was evaluated by the area under the receiver operating characteristic curve (AUC). Furthermore, CXR-OP was tested to assess the long-term risks of mortality, which were evaluated by Kaplan‒Meier survival analysis and the Cox proportional hazards model. The DLM utilizing CXR achieved AUCs of 0.930 and 0.892 during internal and external validation, respectively. The group that underwent DXA with CXR-OP had a higher risk of all-cause mortality (hazard ratio [HR] 2.59, 95% CI: 1.83-3.67), and those classified as CXR-OP in the group without DXA also had higher all-cause mortality (HR: 1.67, 95% CI: 1.61-1.72) in the internal validation set. The external validation set produced similar results. Our DLM uses CXRs for early detection of osteoporosis, aiding physicians to identify those at risk. It has significant prognostic implications, improving life quality and reducing mortality. AI-enabled CXR strategy may serve as a screening tool.


Assuntos
Aprendizado Profundo , Osteoporose , Humanos , Inteligência Artificial , Raios X , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38204234

RESUMO

Colloidal quantum well light-emitting diodes (CQW-LEDs) show great potential for applications in displays and lighting due to their advantages, such as high color purity, spectral tunability and compatibility with flexible electronics. So far, attention has been mainly devoted to pursuing device efficiencies rather than achieving device stability, leading to the fact that the lifetime of CQW-LEDs is far from the demand for practical applications. In this perspective, various approaches to enhance the stability of CQW-LEDs have been discussed, including the synthesis of stable CQW materials, the selection of stable transport layers, the improvement of charge balance, and the introduction of advanced encapsulation techniques.

13.
Can J Cardiol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38092190

RESUMO

BACKGROUND: The burden of asymptomatic left ventricular dysfunction (LVD) is greater than that of heart failure; however, a cost-effective tool for asymptomatic LVD screening has not been well validated. We aimed to prospectively validate an artificial intelligence (AI)-enabled electrocardiography (ECG) algorithm for asymptomatic LVD detection and evaluate its cost-effectiveness for opportunistic screening. METHODS: In this prospective observational study, patients undergoing ECG at outpatient clinics or health check-ups were enrolled in 2 hospitals in Taiwan. Patients were stratified into LVD (left ventricular ejection fraction ≤ 40%) risk groups according to a previously developed ECG algorithm. The performance of AI-ECG was used to conduct a cost-effectiveness analysis of LVD screening compared with no screening. Incremental cost-effectiveness ratio (ICER) and sensitivity analyses were used to examine the cost-effectiveness and robustness of the results. RESULTS: Among the 29,137 patients, the algorithm demonstrated areas under the receiver operating characteristic curves of 0.984 and 0.945 for detecting LVD within 28 days in the 2 hospital cohorts. For patients not initially scheduled for ECG, the algorithm predicted future echocardiograms (high-risk, 46.2%; medium-risk, 31.4%; low-risk, 14.6%) and LVD (high-risk, 26.2%; medium-risk, 3.4%; low-risk, 0.1%) at 12 months. Opportunistic screening with AI-ECG could result in a negative ICER of -$7,439 for patients aged 65 years, with consistent cost-savings across age groups and particularly in men. Approximately 91.5% of the cases were found to be cost-effective at the willingness-to-pay threshold of $30,000 in the probabilistic analysis. CONCLUSIONS: The use of AI-ECG for asymptomatic LVD risk stratification is promising, and opportunistic screening in outpatient clinics has the potential to reduce costs.

14.
Acta Cardiol Sin ; 39(6): 913-928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38022412

RESUMO

Background: The early diagnosis of pulmonary embolism (PE) remains a challenge. Electrocardiograms (ECGs) and D-dimer levels are used to screen potential cases. Objective: To develop a deep learning model (DLM) to detect PE using ECGs and investigate the clinical value of false detections in patients without PE. Methods: Among patients who visited the emergency department between 2011 and 2019, PE cases were identified through a review of medical records. Non-PE ECGs were collected from patients without a diagnostic code for PE. There were 113 PE and 51,456 non-PE ECGs in the training and validation sets for developing the DLM, respectively, and 27 PE and 13,105 non-PE cases in an independent testing set for performance validation. A human-machine competition was conducted from the testing set to compare the performance of the DLM with that of physicians. Receiver operating characteristic (ROC) curves, sensitivity, and specificity were used to determine the diagnostic value. Survival analysis was used to assess the prognosis of the patients without PE, stratified by DLM prediction. Results: The DLM was as effective as physicians in diagnosing PE, with 70.8% sensitivity and 69.7% specificity. The area under the ROC curve of DLM was 0.778 in the testing set and up to 0.9 with D-dimer and demographic data. The non-PE patients whose ECG was misclassified as PE by DLM had higher all-cause mortality [hazard ratio (HR) 2.13 (1.51-3.02)] and risk of non-cardiovascular hospitalization [HR 1.55 (1.42-1.68)] than those correctly classified. Conclusions: A DLM-enhanced ECG system may prompt PE recognition and provide prognostic outcomes in patients with false-positive predictions.

15.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685262

RESUMO

BACKGROUND: The B-type natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (pBNP) are predictors of cardiovascular morbidity and mortality. Since the artificial intelligence (AI)-enabled electrocardiogram (ECG) system is widely used in the management of many cardiovascular diseases (CVDs), patients requiring intensive monitoring may benefit from an AI-ECG with BNP/pBNP predictions. This study aimed to develop an AI-ECG to predict BNP/pBNP and compare their values for future mortality. METHODS: The development, tuning, internal validation, and external validation sets included 47,709, 16,249, 4001, and 6042 ECGs, respectively. Deep learning models (DLMs) were trained using a development set for estimating ECG-based BNP/pBNP (ECG-BNP/ECG-pBNP), and the tuning set was used to guide the training process. The ECGs in internal and external validation sets belonging to nonrepeating patients were used to validate the DLMs. We also followed-up all-cause mortality to explore the prognostic value. RESULTS: The DLMs accurately distinguished mild (≥500 pg/mL) and severe (≥1000 pg/mL) an abnormal BNP/pBNP with AUCs of ≥0.85 in the internal and external validation sets, which provided sensitivities of 68.0-85.0% and specificities of 77.9-86.2%. In continuous predictions, the Pearson correlation coefficient between ECG-BNP and ECG-pBNP was 0.93, and they were both associated with similar ECG features, such as the T wave axis and correct QT interval. ECG-pBNP provided a higher all-cause mortality predictive value than ECG-BNP. CONCLUSIONS: The AI-ECG can accurately estimate BNP/pBNP and may be useful for monitoring the risk of CVDs. Moreover, ECG-pBNP may be a better indicator to manage the risk of future mortality.

16.
Opt Lett ; 48(19): 4977-4980, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773364

RESUMO

A method of energy-transfer resonance of lycopene used to enhance stimulated Raman scattering (SRS) of a weak vibration C-O mode in tetrahydrofuran (THF) was developed in this study. Only C-H SRS was observed in pure THF at high energies. When lycopene was added, the C-O SRS located at 915 cm-1 of the weak vibration mode in THF was observed. The maximum SRS enhancement of the C-O mode was achieved when the concentration was 3.72 × 10-6 mol/L because of the resonance enhancement of the solute, which transferred the excess vibrational energy to the solvent. Moreover, the pulse width compression phenomenon of the C-H vibration in the presence of C-O SRS was obtained.

17.
Digit Health ; 9: 20552076231191055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529539

RESUMO

Objectives: Chest X-rays (CXRs) convey much illegible physiological information that deep learning model (DLM) has been reported interpreting successfully. Since the electrocardiogram age established by DLM was revealed as a heart biological marker, we hypothesize that CXR age has similar potential to describe the heart and lung states. Therefore, we developed a DLM to predict sex and age through CXR and analyzed its relation with future cardiovascular diseases (CVD). Methods: A total of 90,396 CXRs aged 20 to 90 were collected and separated into a development set with 53,102 CXRs and demographic information pairs, a tuning set with 7073 pairs, an internal validation set with 17,364 pairs, and an external validation set with 12,857 pairs. The study trained DLM with development set for estimating age and sex and compared them to actual information. Results: The mean absolute errors of predicted age were 4.803 and 4.313 years in the internal and external validation sets, respectively. The area under the curve of sex analysis was 0.9993 and 0.9988 in the internal and external validation sets, respectively. Patients whose CXR age was 5 years older than chronologic age lead to higher risk of all-cause mortality (hazard ratio (HR): 2.42, 95% confidence interval (CI): 2.00-2.92), cardiovascular (CV)-cause mortality (HR: 7.57, 95% CI: 4.55-12.60), new-onset heart failure (HR: 2.07, 95% CI: 1.56-2.76), new-onset chronic kidney disease (HR: 1.73, 95% CI: 1.46-2.05), new-onset acute myocardial infarction (HR: 1.80, 95% CI: 1.12-2.92), new-onset stroke (HR: 1.45, 95% CI: 1.10-1.90), new-onset coronary artery disease (HR: 1.26, 95% CI: 1.04-1.52), and new-onset atrial fibrillation (HR: 1.43, 95% CI: 1.01-2.02). Conclusions: Using DLM to predict CXR age provided additional information for future CVDs. Older CXR age is an accessible risk classification tool for clinician use.

18.
Digit Health ; 9: 20552076231187247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448781

RESUMO

Background: The electrocardiogram (ECG) may be the most popular test in the management of cardiovascular disease (CVD). Although wide applications of artificial intelligence (AI)-enabled ECG have been developed, an integrating indicator for CVD risk stratification was not investigated. Since mortality may be the most important global outcome, this study aimed to develop a survival deep learning model (DLM) to establish a critical ECG value and explore the associations with various CVD events. Methods: We trained a DLM with 451,950 12-lead resting ECGs obtained from 210,552 patients, for whom 23,592 events occurred. The internal validation set included 27,808 patients with one ECG for each patient. The external validations were performed in a community hospital with 33,047 patients and two transnational data sets with 233,647 and 1631 ECGs. We distinguished the cause of mortality and additionally investigated CVD-related outcomes, including new-onset acute myocardial infarction (AMI), stroke (STK), and heart failure (HF). Results: The DLM achieved C-indices of 0.858/0.836 in internal/external validation sets by using ECG over a 10-year period. The high-mortality-risk group identified by the proposed DLM presented a hazard ratio (HR) of 14.16 (95% confidence interval (CI): 11.33-17.70) compared to the low-risk group in the internal validation and presented a higher risk of cardiovascular (CV) mortality (HR: 18.50, 95% CI: 9.82-34.84), non-CV mortality (HR: 13.68, 95% CI: 10.76-17.38), AMI (HR: 4.01, 95% CI: 2.24-7.17), STK (HR: 2.15, 95% CI: 1.70-2.72), and HF (HR: 6.66, 95% CI: 4.54-9.77), which was consistent in an independent community hospital. The transnational validation also revealed HRs of 4.91 (95% CI: 2.63-9.16) and 2.29 (95% CI: 2.15-2.44) for all-cause mortality in the SaMi-Trop and Clinical Outcomes in Digital Electrocardiography 15% (CODE15) cohorts. Conclusions: The mortality risk by AI-enabled ECG may be applied in passive electronic-health-record-based CVD risk screening, which may identify more asymptomatic and unaware high-risk patients.

19.
J Med Syst ; 47(1): 81, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523102

RESUMO

Emergency department (ED) triage scale determines the priority of patient care and foretells the prognosis. However, the information retrieved from the initial assessment is limited, hindering the risk identification accuracy of triage. Therefore, we sought to develop a 'dynamic' triage system as secondary screening, using artificial intelligence (AI) techniques to integrate information from initial assessment data and subsequent examinations. This retrospective cohort study included 134,112 ED visits with at least one electrocardiography (ECG) and chest X-ray (CXR) in a medical center from 2012 to 2022. Additionally, an independent community hospital provided 45,614 ED visits as an external validation set. We trained an eXtreme gradient boosting (XGB) model using initial assessment data to predict all-cause mortality in 7 days. Two deep learning models (DLMs) using ECG and CXR were trained to stratify mortality risks. The dynamic triage levels were based on output from the XGB-triage and DLMs from ECG and CXR. During the internal and external validation, the area under the receiver operating characteristic curve (AUC) of the XGB-triage model was >0.866; furthermore, the AUCs of DLMs using ECG and CXR were >0.862 and >0.886, respectively. The dynamic triage scale provided a higher C-index (0.914-0.920 vs. 0.827-0.843) than the original one and demonstrated better predictive ability for 5-year mortality, 30-day ED revisit, and 30-day discharge. The AI-based risk scale provides a more accurate and dynamic stratification of mortality risk in ED patients, particularly in identifying patients who tend to be overlooked due to atypical symptoms.


Assuntos
Inteligência Artificial , Serviço Hospitalar de Emergência , Humanos , Estudos Retrospectivos , Triagem/métodos , Eletrocardiografia , Medição de Risco
20.
J Colloid Interface Sci ; 649: 601-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364460

RESUMO

It remains a great challenge to properly design and synthesize single-component artificial tandem enzymes for specific substrates with high selectivity. Herein, V-MOF is synthesized by solvothermal method and its derivatives are constructed via pyrolyzing V-MOF in nitrogen atmosphere at different temperatures, which are denoted as V-MOF-y (y = 300, 400, 500, 700 and 800). V-MOF and V-MOF-y possess tandem enzyme-like activity, i.e. cholesterol oxidase-like and peroxidase-like activity. Among them, V-MOF-700 shows the strongest tandem enzyme activity for V-N bonds. Based on the cascade enzyme activity of V-MOF-700, the nonenzymatic detection platform for cholesterol by fluorescent assay can be established in the presence of o-phenylenediamine (OPD) for the first time. The detection mechanism is that V-MOF-700 catalyzes cholesterol to generate hydrogen peroxide and further form hydroxyl radical (•OH), which can oxidize OPD to obtain oxidized OPD (oxOPD) with yellow fluorescence. The linear detection of cholesterol ranges of 2-70 µM and 70-160 µM with a lower detection limit of 0.38 µM (S/N = 3) are obtained. This method is used to detect cholesterol in human serum successfully. Especially, it can be applied to the rough quantification of membrane cholesterol in living tumor cells, indicating that it has the potential for clinical application.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/química , Fenilenodiaminas , Técnicas Biossensoriais/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...