Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1281182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731917

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2023.1224666.].

2.
Front Microbiol ; 14: 1224666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608953

RESUMO

Introduction: Due to their bioactive compounds and beneficial health effects, functional foods and plant-based natural medicines are widely consumed. Due to its bioactivities, vinegar is one of them that helps humans. Sugarcane original vinegar (SOV) is a special vinegar made from sugarcane as a raw material through biological fermentation processes. Methods: The objective of this study was to assess the effects of sugarcane original vinegar on growth performance, immune response, acute oral toxicity, bacterial reverse mutation, mammalian erythrocyte micronucleus, mouse spermatogonial chromosome aberration, mammalian bone marrow cell chromosome aberration changes, and serum characteristics in mice. Distortion parameters were used to assess its safety, and at the same time, the functionality of SOV was monitored during experimentation. Results: The results show that the SOV has no damage or inhibitory effect on the bone marrow red blood cells of mice and no mutagenic or distortion-inducing effects on the bone marrow cell chromosomes or spermatogonia chromosomes, so it is safe to eat. SOV can improve blood lipids and reduce blood lipid content. Discussion: The study results provide data basis for the intensive processing of sugarcane and the development of high-value SOV products. Sugarcane original vinegar has a beneficial impact on performance, immune response, and chromosomal aberration. The production application influences the vinegar's quality and, consequently, its health benefits.

3.
ACS Omega ; 8(13): 12538-12547, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033789

RESUMO

Wine is an alcoholic beverage, consisting of several compounds in various ranges of concentrations. Wine quality is usually assessed by a sensory panel of trained personnel. Electronic tongues (e-tongues) and electronic noses (e-noses) have been established in recent years to assess the quality of beverages and foods. Response surface and electronic analysis tools were used to examine the quality of black tea wine. The results indicated the optimum initial sugar level (25 °Brix), yeast addition (0.5%), and fermentation temperature (25 °C) for Golden Peony black tea wine. The black tea wine produced under these conditions with 14.0% vol alcohol has as an orange-red color, full wine and tea flavor, and mild and mellow taste. The sourness of the wine was most affected by fermentation factors-yeast addition, fermentation temperature, and initial sugar level. Alcohols, aldehydes, ketones, and alkanes contributed to most of the volatile components under the influence of yeast addition and fermentation temperature. In contrast, nitrogen oxides, aromatics, and organic sulfides contributed under the influence of the initial sugar level. This study provided a facilitated strategy for obtaining the optimum black tea wine fermentation process through electronic nose and tongue-based techniques. The analysis of wines requires new technologies able to detect various different compounds simultaneously, providing worldwide information about the sample instead of information about specific compounds.

4.
Front Nutr ; 10: 1145862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006937

RESUMO

Vinegar is one of the most widely used acidic condiments. Recently, rapid advances have been made in the area of vinegar research. Different types of traditional vinegar are available around the globe and have many applications. Vinegar can be made either naturally, through alcoholic and then acetic acid fermentation, or artificially, in laboratories. Vinegar is the product of acetic acid fermentation of dilute alcoholic solutions, manufactured by a two-step process. The first step is the production of ethanol from a carbohydrate source such as glucose, which is carried out by yeasts. The second step is the oxidation of ethanol to acetic acid, which is carried out by acetic acid bacteria. Acetic acid bacteria are not only producers of certain foods and drinks, such as vinegar, but they can also spoil other products such as wine, beer, soft drinks, and fruits. Various renewable substrates are used for the efficient biological production of acetic acid, including agro and food, dairy, and kitchen wastes. Numerous reports on the health advantages associated with vinegar ingredients have been presented. Fresh sugarcane juice was fermented with wine yeast and LB acetate bacteria to develop a high-quality original sugarcane vinegar beverage. To facilitate the current study, the bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data. The present review article will help scientists discern the dynamic era of vinegar research and highlight areas for future research.

5.
Front Nutr ; 9: 868209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662938

RESUMO

Asparagus [Asparagus cochinchinensis (Lour.) Merr.] is a traditional herbal medicine plant commonly used to nourish yin, moisten dryness, and clear fire cough symptoms. Drying is an excellent option to conserve food materials, i.e., grains, fruits, vegetables, and herbs, reducing the raw materials volume and weight. This study aims to evaluate different drying approaches that could increase the value of asparagus, particularly as an ingredient in fast foods or as nutraceutical byproducts. The volatile components of asparagus roots were analyzed by using headspace-gas chromatography-ion mobility spectroscopy under different drying conditions, i.e., natural drying (ND) at ambient air temperature in the dark, well-ventilated room, temperature range 28-32°C, blast or oven drying at 50°C, heat pump or hot-air drying at temperature 50°C and air velocity at 1.5 ms-1 and vacuum freeze-drying at the temperature of -45°C and vacuum pressure of 10-30 Pa for 24 h. The findings revealed that the various drying processes had multiple effects on the color, odor index, and volatile compounds of the asparagus roots. As a result of the investigations, multiple characteristics of components, therefore, exploitation and comparison of various flavors; a total of 22 compounds were identified, such as alcohols, ketones, aldehydes, acids, esters, heterocyclic, and terpene. The present findings may help understand the flavor of the processed asparagus roots and find a better option for drying and processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...