Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1266641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075036

RESUMO

In the culture of crustaceans, most species show sexual dimorphism. Monosex culture is an effective approach to achieve high yield and economic value, especially for decapods of high value. Previous studies have developed some sex control strategies such as manual segregation, manipulation of male androgenic gland and knockdown of the male sexual differentiation switch gene encoding insulin-like androgenic gland hormone (IAG) in decapods. However, these methods could not generate hereditable changes. Genetic manipulation to achieve sex reversal individuals is absent up to now. In the present study, the gene encoding IAG (EcIAG) was identified in the ridgetail white prawn Exopalaemon carinicauda. Sequence analysis showed that EcIAG encoded conserved amino acid structure like IAGs in other decapod species. CRISPR/Cas9-mediated genome editing technology was used to knock out EcIAG. Two sgRNAs targeting the second exon of EcIAG were designed and microinjected into the prawn zygotes or the embryos at the first cleavage with commercial Cas9 protein. EcIAG in three genetic males was knocked out in both chromosome sets, which successfully generated sex reversal and phenotypic female characters. The results suggest that CRISPR/Cas9-mediated genome editing technology is an effective way to develop sex manipulation technology and contribute to monosex aquaculture in crustaceans.


Assuntos
Sistemas CRISPR-Cas , Palaemonidae , Humanos , Animais , Masculino , Feminino , RNA Guia de Sistemas CRISPR-Cas , Androgênios/metabolismo , Diferenciação Sexual/genética , Palaemonidae/genética , Palaemonidae/metabolismo , Mutação
2.
ACS Nano ; 17(24): 25175-25184, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055464

RESUMO

Printable organic semiconducting single crystals (OSSCs) offer tantalizing opportunities for next-generation wearable electronics, but their development has been plagued by a long-standing yet inherent problem─spatially uncontrolled and stochastic nucleation events─which usually causes the formation of polycrystalline films and hence limited performance. Here, we report a convenient approach to precisely manipulate the elusive molecule nucleation process for high-throughput inkjet printing of OSSCs with record-high mobility. By engineering curvature of the contact line with a teardrop-shaped micropattern, molecule nucleation is elegantly anchored at the vertex of the topological structure, enabling formation of a single nucleus for the subsequent growth of OSSCs. Using this approach, we achieve patterned growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystals, yielding a breakthrough for an organic field-effect transistor array with a high average mobility of 12.5 cm2 V-1 s-1. These findings not only provide keen insights into controlling molecule nucleation kinetics but also offer opportunities for high-performance printed electronics.

3.
J Am Chem Soc ; 145(51): 28022-28029, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108596

RESUMO

Unlike what happens in conventional ferroics, the ferrorotational (FR) domain manipulation and visualization in FR materials are nontrivial as they are invariant under both space-inversion and time-reversal operations. FR domains have recently been observed by using the linear electrogyration (EG) effect and X-ray diffraction (XRD) diffraction mapping. However, ferrorotational selectivity, such as the selective processing of the FR domains and direct visualization of the FR domains, e.g., under an optical microscope, would be the next step to study the FR domains and their possible applications in technology. Unexpectedly, we discovered that the microscopic FR structural distortions in ilmenite crystals can be directly coupled with macroscopic mechanical rotations in such a way that FR domains can be visualized under an optical microscope after innovative rotational polishing, a combined ion milling with a specific rotational polishing, or a twisting-induced fracturing process. Thus, the FR domains could be a unique medium to register the memory of a rotational mechanical process due to a novel selective coupling between its microscopic structural rotations and an external macroscopic rotation. Analogous to the important enantioselectivity in modern chemistry and the pharmaceutical industry, this newly discovered ferrorotational selectivity opens up opportunities for FR manipulation and new FR functionality-based applications.

4.
Fish Shellfish Immunol ; 130: 223-232, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126836

RESUMO

Implanting a spherical nucleus into a recipient oyster is a critical step in artificial pearl production using the pearl oyster Pinctada fucata martensii. However, little is known about the role of post-translational modifications (PTMs) in the response of the pearl oyster to this operation. Lysine acetylation, a highly conserved PTM, may be an essential adaptive strategy to manage multiple biotic or abiotic stresses. We conducted the first lysine acetylome analysis of the P. f. martensii gill 12 h after nucleus implantation, using tandem mass tags (TMT) labeling and Kac affinity enrichment. We identified 2443 acetylated sites in 1301 proteins, and 1511 sites on 895 proteins were quantitatively informative. We found 25 conserved motifs from all of the identified lysine sites, particularly motifs Kac H, Kac S, and Kac Y were strikingly conserved, of which Kac Y, Kac H, Y Kac, Kac K, Kac *K, Kac R, and Kac F which have been observed in other species and are therefore highly conserved. We identified 58 sites that were significantly differently acetylated in P. f. martensii in response to allograft (|fold change|>1.2, P-value ≤ 0.05); 38 newly acetylated and 20 deacetylated. According to GO functional analysis, subcellar location, and KOG classIfication, these proteins were divided into four categories: cytoskeleton, response to stimulus, metabolism, and other. The differentially acetylated proteins (DAPs) enriched pathways include aminoacyl-tRNA biosynthesis, salmonella infection, and longevity regulating pathway-worm-Caenorhabditis elegans (nematode). Parallel reaction-monitoring (PRM) validation of the differential acetylation of 10 randomly selected differentially acetylated sites from the acetylome analysis. These results indicated that our acetylome analysis results were sufficiently reliable and reproducible. These results provide an essential resource for in-depth exploration of the stress responses and adaptation mechanisms associated with lysine acetylation in marine invertebrates and P. f. martensii.


Assuntos
Pinctada , Acetilação , Aloenxertos , Animais , Lisina , Pinctada/genética , Pinctada/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Transferência/metabolismo
5.
Adv Mater ; 34(18): e2200380, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243701

RESUMO

Photosynaptic organic field-effect transistors (OFETs) represent a viable pathway to develop bionic optoelectronics. However, the high operating voltage and current of traditional photosynaptic OFETs lead to huge energy consumption greater than that of the real biological synapses, hindering their further development in new-generation visual prosthetics and artificial perception systems. Here, a fully solution-printed photosynaptic OFET (FSP-OFET) with substantial energy consumption reduction is reported, where a source Schottky barrier is introduced to regulate charge-carrier injection, and which operates with a fundamentally different mechanism from traditional devices. The FSP-OFET not only significantly lowers the working voltage and current but also provides extraordinary neuromorphic light-perception capabilities. Consequently, the FSP-OFET successfully emulates visual nervous responses to external light stimuli with ultralow energy consumption of 0.07-34 fJ per spike in short-term plasticity and 0.41-19.87 fJ per spike in long-term plasticity, both approaching the energy efficiency of biological synapses (1-100 fJ). Moreover, an artificial optic-neural network made from an 8 × 8 FSP-OFET array on a flexible substrate shows excellent image recognition and reinforcement abilities at a low energy cost. The designed FSP-OFET offers an opportunity to realize photonic neuromorphic functionality with extremely low energy consumption dissipation.


Assuntos
Redes Neurais de Computação , Transistores Eletrônicos , Sinapses/fisiologia
6.
J Phys Chem Lett ; 11(18): 7624-7629, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32820925

RESUMO

The realization of high-performance optoelectronic devices requires excellent charge-transporting layers and efficient carrier recombination. Herein, we synthesized cesium tungsten bronze (Cs0.32WO3) nanocrystals and utilized them as the hole-transporting material to fabricate all-inorganic perovskite light-emitting diodes (PeLEDs). Due to the excellent carrier balance characteristics via comparison between the hole-only device and electron-only device, the all-inorganic PeLEDs with CsPbBr3 as the light-emitting layer present the maximum current efficiency of 31.51 cd/A and external quantum efficiency (EQE) of 8.48%, which are self-evidently enhanced compared with the PEDOT:PSS (14.78 cd/A, 4.03%) and WO3 (24.75 cd/A, 6.18%) based devices. Considering the remarkably improved device performance, the proposed HTL of Cs0.32WO3 is promising, acting as a favorable building block for high-efficiency light-emitting devices.

7.
Fish Shellfish Immunol ; 105: 330-340, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712228

RESUMO

C-type lectins are carbohydrate-binding proteins that play important roles in the innate immune response to pathogen infections. Here, multi-step high performance liquid chromatography (HPLC), combined with mass spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of Pinctada fucata martensii. Using this method, we obtained a novel isoform of C-type lectin (PmCTL-1). PmCTL-1 strongly inhibited gram-positive bacteria. The complete cDNA sequence of PmCTL-1 was 636 bp in length, and encoded a protein 149 amino acids long, containing a typical carbohydrate recognition domain (CRD). A phylogenetic analysis based on a multiple sequence alignment indicated that PmCTL-1 was highly similar to C-type lectins from other mollusks. Fluorescent quantitative real-time PCR analysis showed that PmCTL-1 mRNA was strongly upregulated in the mantle of healthy P.f. martensii, but was expressed only at low levels in the gill, gonad, hepatopancreas, adductor muscle, and hemocytes. PmCTL-1 expression levels in the mantle and hemocytes increased significantly in response to bacterial stimulation. This study provides a valuable framework for further explorations of innate immunity and the immune response in mollusks.


Assuntos
Antibacterianos/farmacologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Pinctada/genética , Pinctada/imunologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Lectinas Tipo C/química , Filogenia , Alinhamento de Sequência , Soro/química
8.
Nanoscale Horiz ; 5(7): 1096-1105, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32424385

RESUMO

Ultrathin organic semiconductor (OSC) crystalline films hold the promise of achieving high-performance, flexible, and transparent organic electronic devices. However, fast and high-throughput solution deposition of uniform pinhole-free ultrathin OSC crystalline films over a large area remains a challenge. Here, we demonstrate that a mixed solvent system can obviously alter the fluid flow dynamics and significantly improve the blade-coating quality of the film, enabling us to achieve a large-area continuous and smooth bis(triethylsilylethynyl)anthradithiophene (Dif-TES-ADT) ultrathin film at a fast coating speed of ∼1 mm s-1, much superior to the 30-50 µm s-1 for conventional methods. Also, the ultrathin, highly crystalline Dif-TES-ADT film-based organic thin-film transistors (OTFTs) exhibit a maximum mobility up to 5.54 cm2 V-1 s-1, which is on par with the Dif-TES-ADT single crystal-based devices and among the highest for Dif-TES-ADT film-based devices. This finding should open a new route to achieve ultrathin OSC crystalline film-based high-performance flexible and transparent electronics.

9.
Fish Shellfish Immunol ; 92: 728-735, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279079

RESUMO

Antibacterial peptides (AMPs) constitute an important part of the body's innate immune system and are responsible for a wide range of inhibitory effects against pathogens such as bacteria, fungi, and viruses. In this study, multi-step high performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of Pinctada fucata martensii (P.f. Martensii) and obtain a component named P.f. Martensii antimicrobial peptide-1 (PmAMP-1). PmAMP-1 cDNA was cloned and sequenced by rapid amplification of cDNA ends (RACE) and mRNA expression of was analyzed by quantitative real-time PCR (qRT-PCR). From the results of this study, full-length PmAMP-1 cDNA was shown to be 700 base pairs (bp) long with an open reading frame (ORF) of 294 bp, encoding 97 amino acids with a predicted structure that is mostly α-helices. PmAMP-1 mRNA was constitutively expressed in all tested tissues including the adductor muscle, mantle, hepatopancreas, gill, gonads and hemocytes. The highest level of PmAMP-1 transcription was observed at 8 h and 2 h after bacterial challenge in hemocytes and adductor muscle (p < 0.01), respectively. Furthermore, PmAMP-1 caused significant morphological alterations in E. coli, as shown by transmission electron microscopy (TEM). The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Pinctada/genética , Pinctada/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Bases , Resistência à Doença/genética , Perfilação da Expressão Gênica , Imunidade Celular/genética , Imunidade Humoral/genética
10.
Appl Biochem Biotechnol ; 176(1): 86-100, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25832179

RESUMO

The light-response curve of photosynthesis is an important tool used to study plant ecophysiology and can provide a scientific basis for the response of plant photosynthetic characteristics to environmental factors. At present, there are five common light-response models of photosynthesis. To gain deeper insight into the applicability of different light-response models of photosynthesis and the photosynthetic physiological characteristics of Populus euramericana cv. 'Zhonglin46', two typical light-response curves of photosynthesis in P. euramericana cv. 'Zhonglin46' leaves, one under drought stress and the other under control conditions, were measured using a CIRAS-2 portable photosynthesis system. The light-response data were divided into two groups: one set of data was used to fit light-response curves, and the other set of data was used to test them. The accuracy of the fitting and the predictions of the different models were evaluated by mean square error and mean absolute error. The results showed that the light-response curves of P. euramericana cv. 'Zhonglin46' under drought stress matched the light-saturated inhibition type and that those under the control condition matched the approaching light-saturation type. The two new models (i.e., the modified rectangular hyperbola model and modified exponential model) fit the two light-response curves and their characteristic parameters well, and the fitting results of the two models were similar. Conversely, the three traditional models (i.e., the rectangular hyperbola model, nonrectangular hyperbola model, and exponential model) did not fit the two light-response curves well; in particular, they overestimated the maximum net photosynthetic rate, underestimated the light saturation point (LSP), and did not fit the net photosynthetic rate during the light-saturated stage. The LSP calculated by the "linear method" combined with the traditional models was significantly lower than the measured values; additionally, the appropriate value of the proportional coefficient was difficult to determine, and the assumed value (empirical value) could easily lead to unreliable results by the "coefficient method". The "estimation method" based on the measured light-response data was still a relatively accurate, simple, and practical way to determine LSP. In addition, the nonrectangular hyperbolic model also had good accuracy and applicability in fitting the approaching light saturation curve on the basis of the "estimation method" to determine LSP.


Assuntos
Modelos Biológicos , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Populus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...