Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37220058

RESUMO

In recent years, with the rapid development of deep learning, various deep learning frameworks have been widely used in brain-computer interface (BCI) research for decoding motor imagery (MI) electroencephalogram (EEG) signals to understand brain activity accurately. The electrodes, however, record the mixed activities of neurons. If different features are directly embedded in the same feature space, the specific and mutual features of different neuron regions are not considered, which will reduce the expression ability of the feature itself. We propose a cross-channel specific-mutual feature transfer learning (CCSM-FT) network model to solve this problem. The multibranch network extracts the specific and mutual features of brain's multiregion signals. Effective training tricks are used to maximize the distinction between the two kinds of features. Suitable training tricks can also improve the effectiveness of the algorithm compared with novel models. Finally, we transfer two kinds of features to explore the potential of mutual and specific features to enhance the expressive power of the feature and use the auxiliary set to improve identification performance. The experimental results show that the network has a better classification effect in the BCI Competition IV-2a and the HGD datasets.

2.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2615-2626, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33175681

RESUMO

Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) decoding helps motor-disabled patients to communicate with external devices directly, which can achieve the purpose of human-computer interaction and assisted living. MI EEG decoding has a core problem which is extracting as many multiple types of features as possible from the multi-channel time series of EEG to understand brain activity accurately. Recently, deep learning technology has been widely used in EEG decoding. However, the variability of the simple network framework is insufficient to satisfy the complex task of EEG decoding. A multi-scale fusion convolutional neural network based on the attention mechanism (MS-AMF) is proposed in this paper. The network extracts spatio temporal multi-scale features from multi-brain regions representation signals and is supplemented by a dense fusion strategy to retain the maximum information flow. The attention mechanism we added to the network has improved the sensitivity of the network. The experimental results show that the network has a better classification effect compared with the baseline method in the BCI Competition IV-2a dataset. We conducted visualization analysis in multiple parts of the network, and the results show that the attention mechanism is also convenient for analyzing the underlying information flow of EEG decoding, which verifies the effectiveness of the MS-AMF method.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Humanos , Imaginação , Redes Neurais de Computação
3.
Sensors (Basel) ; 20(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575798

RESUMO

Recognition of motor imagery intention is one of the hot current research focuses of brain-computer interface (BCI) studies. It can help patients with physical dyskinesia to convey their movement intentions. In recent years, breakthroughs have been made in the research on recognition of motor imagery task using deep learning, but if the important features related to motor imagery are ignored, it may lead to a decline in the recognition performance of the algorithm. This paper proposes a new deep multi-view feature learning method for the classification task of motor imagery electroencephalogram (EEG) signals. In order to obtain more representative motor imagery features in EEG signals, we introduced a multi-view feature representation based on the characteristics of EEG signals and the differences between different features. Different feature extraction methods were used to respectively extract the time domain, frequency domain, time-frequency domain and spatial features of EEG signals, so as to made them cooperate and complement. Then, the deep restricted Boltzmann machine (RBM) network improved by t-distributed stochastic neighbor embedding(t-SNE) was adopted to learn the multi-view features of EEG signals, so that the algorithm removed the feature redundancy while took into account the global characteristics in the multi-view feature sequence, reduced the dimension of the multi-visual features and enhanced the recognizability of the features. Finally, support vector machine (SVM) was chosen to classify deep multi-view features. Applying our proposed method to the BCI competition IV 2a dataset we obtained excellent classification results. The results show that the deep multi-view feature learning method further improved the classification accuracy of motor imagery tasks.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imaginação , Intenção , Algoritmos , Humanos
4.
Nanotechnology ; 31(27): 275707, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32235049

RESUMO

In this work, to maximize the unique attributes of reduced graphene oxide (RGO) for excellent microwave absorption, the ultralight RGO aerogels with improved dispersion and interface polarization performance were fabricated via a facile cation-assisted hydrothermal treatment process. The prepared RGO/paraffin composite exhibits excellent microwave absorption (MA) performance in a wideband frequency range of 8.0 ∼ 18.0 GHz with an ultralow absorbent content of 0.5 wt.%. Such performance is comparable with most previously reported results on RGO-based composites but required much higher absorbent content. The mechanisms for the enhancement of polarization relaxation loss and conductive loss were investigated in detail. This study provides a promising and facile method for preparing RGO-based excellent microwave absorption materials with ultra-low filler content, which is significant for designing efficient MA absorbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...