Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 104, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573420

RESUMO

It has been proposed that boron neutron capture therapy (BNCT) holds promise as a treatment modality for melanoma. However, the effectiveness of boron agents in delivery remains a critical issue to be addressed for BNCT. To this end, phenylboronic acid, which exhibits good water solubility and low cytotoxicity similar to BPA, has been investigated as a potential nuclear-targeting boron agent. The boron concentration of phenylboronic acid was found to be 74.47 ± 12.17 ng/106 B16F10 cells and 45.77 ± 5.64 ng/106 cells in the nuclei. Molecular docking experiments were conducted to investigate the binding of phenylboronic acid to importin proteins involved in nuclear transport. The potential of phenylboronic acid to serve as a desirable nucleus-delivery boron agent for neutron capture therapy in melanoma warrants further exploration.


Assuntos
Ácidos Borônicos , Melanoma , Terapia por Captura de Nêutron , Humanos , Boro , Simulação de Acoplamento Molecular
2.
Lung Cancer ; 181: 107255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244039

RESUMO

BACKGROUND: Microsatellite instability (MSI) is the first pan-cancer biomarker approved to guide immune checkpoint inhibitor therapy for MSI-high (MSI-H) solid tumors. In lung cancer, the MSI-H frequency is very low, and the genetic characteristics and prognosis of lung cancer with MSI-H were rarely reported. METHODS: Next-generation sequencing and immunohistochemistry were used detect MSI status, tumor mutation burden (TMB) and PD-L1 expression. RESULTS: Among 12,484 lung cancer patients screened, 66 were found with MSI-H, the proportion was as low as 0.5%. Compared with Microsatellite stability (MSS), TMB was higher in MSI-H lung cancer patients, while PD-L1 expression showed no considerable difference between MSI-H and MSS. After propensity score matching, compared with MSS, the most common companion mutations in MSI-H were TP53, BRCA2, TGFBR2, PTEN and KMT2C. In MSI-H lung adenocarcinoma with EGFR mutation, TGFBR2 and ERBB2 had higher mutation frequency than in MSS. CONCLUSION: The current study reveals the genetic characteristics of MSI-H lung cancer, which advanced our understanding of MSI-H lung cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Instabilidade de Microssatélites , Antígeno B7-H1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudos de Coortes , Prognóstico , Mutação , Genômica , Neoplasias Colorretais/patologia
3.
Front Genet ; 13: 996625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568396

RESUMO

Background: Fatty acid metabolism (FAM), as a hallmark of caner, plays important roles in tumor initiation and carcinogenesis. However, the significance of fatty acid metabolism-related genes in colon adenocarcinoma (COAD) are largely unknown. Methods: RNA sequencing data and clinical information were downloaded from the Cancer Genome Atlas (TCGA) cohort. Univariate and multivariate Cox regression analyses were utilized to construct a fatty acid metabolism-related gene signature. Kaplan-Meier survival and receiver operating characteristic (ROC) analyses were used to verify the performance of this signature. GEO datasets were applied to validate the signature. Maftools package was utilized to analyze the mutation profiles of this signature. Correlation between the risk signature and stemness scores was compared by RNA stemness score (RNAss). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set variation analysis (GSVA) were performed to explore the potential functions and signaling pathways. Immune landscape of the signature was explored by analyzing different immune cells infiltration, immune functions and microsatellite instability. A nomogram was constructed by combining the risk signature and multiple clinical factors. Expression levels and prognostic values of the risk genes were revealed in the cancer genome atlas and GEO databases. Moreover, the expression the risk genes were measured in cell lines using real time quantitative PCR (qRT-PCR). Results: Eight fatty acid metabolism-related genes (CD36, ENO3, MORC2, PTGR1, SUCLG2, ELOVL3, ELOVL6 and CPT2) were used to construct a risk signature. This signature demonstrated better prognostic value than other clinicopathological parameters, with AUC value was 0.734 according to the cancer genome atlas database. There was negative correlation between the riskscore and RNA stemness score. The patients in the high-risk group demonstrated higher infiltration of M0 macrophages, and less infiltration of activated CD4 memory T cells and Eosinophils. There were more MSI patients in the high-risk group than those in the low-risk group (38% vs. 30%). The risk scores of patients in the MSI group were slightly higher than those in the microsatellite stability group. Gene ontology, kyoto encyclopedia of genes and genomes and gene set variation analysis enrichment analyses showed that several metabolism-related functions and signaling pathways were enriched. A nomogram showed good predictive capability of the signature. Moreover, qRT-PCR revealed upregulated expression of ENO3, MORC2, SUCLG2 and ELOVL6, and downregulated expression of CPT2 in all examined colon adenocarcinoma cell lines. Conclusion: This study provided novel insights into a fatty acid metabolism-related signature in the prognosis an immune landscape of colon adenocarcinoma patients.

4.
Int J Biol Sci ; 18(13): 4932-4949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982908

RESUMO

Little is known about the oncogenic role or biological function of copine Ⅷ (CPNE8) in gastric cancer (GC). Based on TCGA database, we screened for CPNE8 and analyzed the expression of CPNE8 in GC. The correlations between CPNE8 and clinical features were analyzed using TCGA and GEO databases. The prognostic value of CPNE8 was assessed using Cox analysis and Kaplan-Meier curves. The results showed that increased expression of CPNE8 was positively correlated with metastasis and can be considered an independent prognostic risk factor for poor survival. We found that CPNE8 can promote cell proliferation, migration, and invasiveness in GC using in vitro and in vivo experiments. Our study demonstrated that CPNE8 promotes tumor progression via regulation of focal adhesion, and these effects can be rescued by focal adhesion kinase (FAK) inhibitor GSK2256098 or knockdown of FAK. In addition, CPNE8 was correlated significantly with the infiltration of cancer-associated fibroblasts and immune cells, as demonstrated by various algorithms, and high CPNE8 expression predicted poor efficacy of immune checkpoint therapy. Our findings suggest that CPNE8 modulates focal adhesion and tumor microenvironment to promote GC progression and invasiveness and could serve as a novel prognostic biomarker in GC.


Assuntos
Proteínas de Transporte , Neoplasias Gástricas , Microambiente Tumoral , Proteínas de Transporte/genética , Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Invasividade Neoplásica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral/genética
5.
Oncogenesis ; 11(1): 21, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487890

RESUMO

Little is known about the biological functions of neuron-specific enolase (NSE) as a specific biomarker for small-cell lung cancer (SCLC). Herein, we elucidate the effect and mechanism of NSE on SCLC stem cell-like characteristics. Upregulated NSE expression was observed in spheroid cells. The gain-of-function and loss-of-function approaches demonstrated that modulation of NSE positively regulated cell proliferation, drug resistance, spherical clone formation, tumor growth, and stem cell-like characteristics of SCLC cells. Mechanistic studies revealed that NSE might downregulate the expression of neuroblastoma suppressor of tumorigenicity 1 (NBL1) by interacting with NBL1, thereby attenuating the competitive inhibitory effect of NBL1 on BMP2 and enhancing the interaction between BMP2 and BMPR1A; this, in turn, may activate the BMP2/Smad/ID1 pathway and promote SCLC stem cell-like characteristics. Moreover, overexpression of NBL1or knockdown of BMP2 rescued the NSE-induced stem cell-like characteristics. In clinical specimens, NSE expression was positively associated with ALDH1A1 expression and negatively correlated with NBL1 expression. High NSE and ALDH1A1 expressions and low NBL1 expression were correlated with poor prognosis in patients with SCLC. In summary, our study demonstrated that NSE promoted stem cell-like characteristics of SCLC via NBL1 and the activation of the BMP2/Smad/ID1 pathway.

6.
Neoplasma ; 69(2): 303-310, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068161

RESUMO

The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process and the detection of CTCs has been widely used clinically. In addition, cancer stem cells (CSCs) are the source of distant metastasis. However, the relationship between CTCs and CSCs in nasopharyngeal carcinoma (NPC) patients was largely unknown. A total of 93 NPC patients were enrolled in this study. The CTCs in the peripheral blood were detected. The expression of ALDH1A1 in the tumor tissues of the corresponding patients was detected using immunohistochemistry (IHC). The prognostic value of CTCs level and the correlation with the expression of ALDH1A1 was evaluated. Data showed that the detection of CTCs was positively correlated with metastasis (p<0.001). The positive detection of CTCs was also associated with poor overall survival (p=0.025). CTCs ≥2 demonstrated good specificity and sensitivity in predicting distant metastasis, while CTCs ≥8 demonstrated better specificity and sensitivity in predicting prognosis than CTCs ≥2. Furthermore, we found that there was a positive relationship between the detection of CTCs and the expression of ALDH1A1 (p=0.001). The prognosis analysis also demonstrated that high ALDH1A1 expression was correlated with poor overall survival (p=0.006). Our study demonstrated a positive correlation between the CTCs and the expression of CSCs, both were positively correlated with metastasis and poor prognosis. These results indicated that the CTCs might indirectly reflect the expression of CSCs.


Assuntos
Neoplasias Nasofaríngeas , Células Neoplásicas Circulantes , Biomarcadores Tumorais/metabolismo , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/patologia , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico
7.
Front Oncol ; 11: 728181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676164

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a malignant tumor with high morbidity and mortality. It is characterized by a large number of somatic mutations and genomic instability. Long non-coding RNAs (lncRNAs) are widely involved in the expression of genomic instability in renal cell carcinoma. But no studies have identified the genome instability-related lncRNAs (GInLncRNAs) and their clinical significances in RCC. METHODS: Clinical data, gene expression data and mutation data of 943 RCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Based on the mutation data and lncRNA expression data, GInLncRNAs were screened out. Co-expression analysis, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore their potential functions and related signaling pathways. A prognosis model was further constructed based on genome instability-related lncRNAs signature (GInLncSig). And the efficiency of the model was verified by receiver operating characteristic (ROC) curve. The relationships between the model and clinical information, prognosis, mutation number and gene expression were analyzed using correlation prognostic analysis. Finally, the prognostic model was verified in clinical stratification according to TCGA dataset. RESULTS: A total of 45 GInLncRNAs were screened out. Functional analysis showed that the functional genes of these GInLncRNAs were mainly enriched in chromosome and nucleoplasmic components, DNA binding in molecular function, transcription and complex anabolism in biological processes. Univariate and Multivariate Cox analyses further screened out 11 GInLncSig to construct a prognostic model (AL031123.1, AC114803.1, AC103563.7, AL031710.1, LINC00460, AC156455.1, AC015977.2, 'PRDM16-dt', AL139351.1, AL035661.1 and LINC01606), and the coefficient of each GInLncSig in the model was calculated. The area under the curve (AUC) value of the ROC curve was 0.770. Independent analysis of the model showed that the GInLncSig model was significantly correlated with the RCC patients' overall survival. Furthermore, the GInLncSig model still had prognostic value in different subgroups of RCC patients. CONCLUSION: Our study preliminarily explored the relationship between genomic instability, lncRNA and clinical characteristics of RCC patients, and constructed a GInLncSig model consisted of 11 GInLncSig to predict the prognosis of patients with RCC. At the same time, our study provided theoretical support for the exploration of the formation and development of RCC.

8.
Open Med (Wars) ; 16(1): 419-427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758783

RESUMO

FGF16 is implicated in the progression of some specific types of cancers, such as embryonic carcinoma, ovarian cancer, and liver cancer. Yet, the function of FGF16 in the development of lung cancer remains largely unexplored. In this study, we present the novel function of FGF16 and the regulation of miR-520b on FGF16 in lung cancer progression. In clinical lung cancer tissues, FGF16 is overexpressed and its high level is negatively associated with the low level of miR-520b. Furthermore, both the transcription and translation levels of FGF16 are restrained by miR-520b in lung cancer cells. For the regulatory mechanism investigation, miR-520b is able to directly bind to the 3'-untranslated region (3'UTR) of FGF16 mRNA, leading to its mRNA cleavage in the cells. Functionally, miR-520b reduces the growth of lung cancer and its inhibitor anti-miR520b is able to promote the growth through competing endogenous miR-520b. Moreover, FGF16 silence using RNA interference is capable of doing great damage to anti-miR-520b-accelerated growth of lung cancer. Thus, our finding indicates that FGF16 is a new target gene of miR-520b in lung cancer. For lung cancer, FGF16 may serve as a novel biomarker and miR-520b/FGF16 may be useful in clinical treatment.

9.
Transl Oncol ; 14(4): 101039, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33618068

RESUMO

Neuron-specific enolase (NSE) has been used as a specific biomarker for small cell lung cancer (SCLC) patients. Nevertheless, the biological function and mechanism of NSE in SCLC are still unclear. In this study, we clarified the role of NSE in the progression of SCLC and found that NSE expression was positively correlated with distant metastasis. Functional analysis showed that overexpression of NSE promoted migration and invasion of SCLC cells. Mechanism analysis showed that NSE overexpression induced epithelial-mesenchymal transition (EMT) of SCLC cells. Moreover, overexpression of NSE increased the protein expression of ß-catenin and its downstream target genes, and silencing ß-catenin eliminated NSE-mediated cell migration, invasion and EMT process. Furthermore, NSE interacted with ß-catenin and inhibited the degradation of ß-catenin. Besides, the animal experiments also indicated that NSE could promote the EMT process and distant metastasis of SCLC cells in vivo. In summary, our results revealed that NSE could promote the EMT process of SCLC cells by activating the Wnt/ß-catenin signaling pathway, thereby promoting cell migration, invasion and distant metastasis, which might serve as a potential target for the therapy of SCLC patients.

10.
Int J Med Sci ; 17(17): 2718-2727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162799

RESUMO

Lung squamous cell carcinoma (LUSCC), as the major type of lung cancer, has high morbidity and mortality rates. The prognostic markers for LUSCC are much fewer than lung adenocarcinoma. Besides, protein biomarkers have advantages of economy, accuracy and stability. The aim of this study was to construct a protein prognostic model for LUSCC. The protein expression data of LUSCC were downloaded from The Cancer Protein Atlas (TCPA) database. Clinical data of LUSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 237 proteins were identified from 325 cases of LUSCC patients based on the TCPA and TCGA database. According to Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, a prognostic prediction model was established which was consisted of 6 proteins (CHK1_pS345, CHK2, IRS1, PAXILLIN, BRCA2 and BRAF_pS445). After calculating the risk values of each patient according to the coefficient of each protein in the risk model, the LUSCC patients were divided into high risk group and low risk group. The survival analysis demonstrated that there was significant difference between these two groups (p= 4.877e-05). The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.699, which suggesting that the prognostic risk model could effectively predict the survival of LUSCC patients. Univariate and multivariate analysis indicated that this prognostic model could be used as independent prognosis factors for LUSCC patients. Proteins co-expression analysis showed that there were 21 proteins co-expressed with the proteins in the risk model. In conclusion, our study constructed a protein prognostic model, which could effectively predict the prognosis of LUSCC patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/mortalidade , Perfilação da Expressão Gênica , Neoplasias Pulmonares/mortalidade , Análise Serial de Proteínas/estatística & dados numéricos , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Medição de Risco/métodos
11.
Int J Med Sci ; 17(7): 912-920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308544

RESUMO

Aim: CC chemokine receptor 9 (CCR9) interacts with its exclusive ligand CCL25, resulting in promoting tumor progression and metastasis. However, the effect and mechanisms of CCR9 on lung adenocarcinoma distant metastasis remain largely unknown. To preliminary clarify the underlying mechanisms, we investigate the correlation between CCR9 and ALDH1A1+cancer stem cells (CSCs), as well as the effect of CCR9 on the migration and invasion of CSCs. Methods: Immunohistochemistry was performed to detect the expression of CCR9 in lung adenocarcinoma tissues. The correlations of CCR9 with distant metastasis and overall survival were investigated. Serial paraffin-embedded tissue blocks were used to detect ALDH1A1+CSCs expression. The correlations between CCR9 expression and ALDH1A1+CSCs were evaluated. We further studied the effect of CCR9/CCL25 on the migration and invasion of CSCs using transwell assays. Results: There were positive correlations between CCR9 expression and distant metastasis, as well as poor overall survival. Patients with high CCR9 expression were more likely to develop distant metastasis and demonstrated poorer overall survival than patients with low CCR9 expression. In addition, there was positive correlation between the expression of CCR9 and ALDH1A1 in the same tumor microenvironment. ALDHhigh CSCs demonstrated enhanced expression of CCR9 than ALDHlow cells. Further transwell assays demonstrated that the numbers of CSCs migrated or invaded in response to CCL25 were more than that without CCL25 stimulation. Additional application of anti-CCR9 antibody reversed the CCL25-induced migration and invasion of CSCs. Conclusions: In summary, our study demonstrated that CCR9/CCL25 promoted the migration and invasion of CSCs, which might contribute to distant metastasis and poor overall survival. Our findings provided evidence that CCR9/CCL25 could be used as novel therapeutic targets for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores CCR/metabolismo , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Família Aldeído Desidrogenase 1/metabolismo , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Receptores CCR/genética , Retinal Desidrogenase/metabolismo , Células Tumorais Cultivadas
12.
Radiology ; 296(2): E65-E71, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191588

RESUMO

Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performance. Materials and Methods In this retrospective and multicenter study, a deep learning model, the COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT scans for the detection of COVID-19. CT scans of community-acquired pneumonia (CAP) and other non-pneumonia abnormalities were included to test the robustness of the model. The datasets were collected from six hospitals between August 2016 and February 2020. Diagnostic performance was assessed with the area under the receiver operating characteristic curve, sensitivity, and specificity. Results The collected dataset consisted of 4352 chest CT scans from 3322 patients. The average patient age (±standard deviation) was 49 years ± 15, and there were slightly more men than women (1838 vs 1484, respectively; P = .29). The per-scan sensitivity and specificity for detecting COVID-19 in the independent test set was 90% (95% confidence interval [CI]: 83%, 94%; 114 of 127 scans) and 96% (95% CI: 93%, 98%; 294 of 307 scans), respectively, with an area under the receiver operating characteristic curve of 0.96 (P < .001). The per-scan sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175 scans) and 92% (239 of 259 scans), respectively, with an area under the receiver operating characteristic curve of 0.95 (95% CI: 0.93, 0.97). Conclusion A deep learning model can accurately detect coronavirus 2019 and differentiate it from community-acquired pneumonia and other lung conditions. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Inteligência Artificial , Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Adulto , Idoso , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Infecções por Coronavirus/diagnóstico , Aprendizado Profundo , Diagnóstico Diferencial , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Pandemias , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , SARS-CoV-2 , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
13.
Int J Biol Sci ; 16(6): 935-946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140063

RESUMO

Lymphoma is a malignant disease of the hematopoietic system that typically affects B cells. The up-regulation of miR-148b is associated with radiosensitization in B-cell lymphoma (BCL). This study aimed to explore the role of miR-148b in regulating the radiosensitivity of BCL cells and to investigate the underlying mechanism. miR-148b directly targeted Bcl-w, decreased the cell viability and colony formation, while promoted apoptosis, in irradiated BCL cells. These changes were accompanied by decreased mitochondrial membrane potential, release of cytochrome C, increased levels of the cleaved caspase 9 and caspase 3, and increased expression of other proteins related to the mitochondrial apoptosis pathway. These effects of miR-148b were effectively inhibited by Bcl-w. In addition, miR-148b inhibited the growth of tumors in nude mice implanted with xenografts of irradiated Raji cells. In patients with BCL, levels of miR-148b were downregulated, while levels of Bcl-w were upregulated; a significant negative correlation between levels of miR-148b and Bcl-w was confirmed. Taken together, these experiments showed that miR-148b promoted radiation-induced apoptosis in BCL cells by targeting anti-apoptotic Bcl-w. miR-148b might be used as a marker to predict the radiosensitivity of BCL.


Assuntos
MicroRNAs/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Lentivirus/genética , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Linfoma de Células B , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real
14.
Oncol Lett ; 18(5): 4809-4815, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31611991

RESUMO

Neuron-specific enolase (NSE) is generally considered as a marker for diagnosis and evaluation of the response to therapy in small cell lung cancer (SCLC). However, the role of NSE in the progression of SCLC remains to be elucidated. In the present study, the functions of NSE in SCLC, in addition to the potential mechanisms, were investigated using a loss-of-function approach with NSE-targeting small interfering (si)RNA. The knockdown of NSE markedly decreased the proliferation of NCI-H209 cells, as indicated by MTT assay (P<0.05). Furthermore, the silencing of NSE resulted in the formation of smaller and fewer colonies compared with that in the control group (P<0.001). Flow cytometric analysis indicated that the silencing of NSE resulted in a decreased S-phase population among NCI-H209 cells (P<0.05). Transwell assay demonstrated that the silencing of NSE suppressed the migration of NCI-H209 cells (P<0.001). NCI-H209 cells transfected with NSE siRNA-1 or negative control were collected and the protein levels of metastasis-associated genes were detected using western blot analysis. The results indicated that the knockdown of NSE led to downregulation of the pro-metastatic gene vascular endothelial growth factor (VEGF; P<0.05) and the upregulation of metastasis suppressor genes NM23 and E-cadherin (P<0.05). Taken together, the results of the present study demonstrated that the silencing of NSE suppressed the migration, proliferation and colony formation ability of SCLC cells and decreased the S-phase population. In addition, the knockdown of NSE resulted in the upregulation of E-cadherin and NM23 and the downregulation of VEGF. Collectively, these results indicated that intracellular NSE may have an important role in the progression of SCLC.

15.
Oncol Lett ; 18(1): 137-144, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31289482

RESUMO

The present study aimed to evaluate microRNA- 20b-5p (miR-20b-5p) expression in non-small cell lung cancer (NSCLC), and investigate the effects of miR-20b-5p expression on NSCLC cell proliferation and migration. Reverse transcription-quantitative polymerase chain reaction was performed to measure the expression level of miR-20b-5p in NSCLC tissues and cell lines. Cell Counting Kit-8 and wound healing assays were used to measure cell proliferation and migration. A dual-luciferase reporter assay was performed to validate B-cell translocation gene 3 (BTG3) as a target of miR-20b-5p. It was identified that the expression level of miR-20b-5p is elevated in NSCLC tissues and cell lines. miR-20b-5p overexpression was revealed to promote NSCLC cell proliferation and migration. Furthermore, BTG3 was identified as a direct target of miR-20b-5p, and BTG3 overexpression reversed a miR-20b-5p mimic-induced increase in cell proliferation and migration. In summary, the present study revealed that miR-20b-5p promotes NSCLC cell proliferation and migration by targeting BTG3, which may assist with the development of a novel therapeutic target for the treatment of NSCLC.

16.
Onco Targets Ther ; 12: 2553-2561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040698

RESUMO

AIM: The human ubiquitination factor E4B (UBE4B) gene is frequently amplified in some solid cancers. However, the role of UBE4B in nasopharyngeal carcinoma (NPC) has not yet been investigated. METHODS: Firstly, we analyzed the expression of UBE4B in NPC samples using real-time quantitative PCR and Western blot analysis. After knocking down UBE4B using small interfering RNA technology, the functions of UBE4B on cell proliferation, apoptosis, and cell cycle, as well as underlying mechanism, were investigated. RESULTS: Compared with matched adjacent non-tumor tissues, both protein and mRNA levels of UBE4B were much higher in most NPC cancerous specimens. Deficiency of UBE4B could significantly inhibit tumor cell growth and induce cell apoptosis. Knocking down UBE4B could promote the expression of cleaved caspase3 and p53, and inhibition of caspase3 could prevent cell apoptosis induced by the deficiency of UBE4B. CONCLUSION: These results indicate that expression of UBE4B was higher in most NPC tissues compared to adjacent non-tumoral tissues, and that knockdown of UBE4B inhibited the cell growth and induced apoptosis in NPC cells. This process was regulated by the activation of caspase3 and p53. Thus, UBE4B gene might act as a potential molecular target to develop novel strategy for NPC patients.

17.
BMC Cancer ; 19(1): 209, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849960

RESUMO

BACKGROUND: MicroRNA-148b (miR-148b) has been detected in various types of tumors, and is generally viewed as a tumor suppressor. Our previous study found the decreased expression of miR-148b in human non small cell lung cancer (NSCLC) specimens and cell lines. However, the underlying mechanisms of miR-148b in regulating tumor progression remain unclear. METHODS: Firstly animal experiments were performed to verify whether miR-148b could inhibit the tumor growth. Then, the underlying mechanisms were studied by transfecting recombinant plasmids containing a miR-148b mimic or a negative control (NC) mimic (shRNA control) into NSCLC cell lines PC14/B and A549 cells. Tumor cells transfected with unpackaged lentiviral vectors was used as blank control. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. Cell cycle arrest was compared to clarify the mechanism underlying the tumor cell proliferation. Annexin V-FITC Apoptosis Detection kit was applied to investigate the effect of miR-148b on cell apoptosis. Furthermore, western blot analysis were performed to study the targeting pathway. RESULTS: We found that over-expression of miR148b could significantly inhibit tumor growth, while knocking down miR148b could obviously promote tumor growth. Further experiment showed that miR-148b inhibited tumor cell proliferation. Besides, over-expression of miR148b decreased the G2/M phase population of the cell cycle by preventing NSCLC cells from entering the mitotic phase and enhanced tumor cell apoptosis. Further western blot analysis indicated that miR148b could inhibit mitogen-activated protein kinase/Jun N-terminal kinase (MAPK/JNK) signaling by decreasing the expression of phosphorylated (p) JNK. CONCLUSIONS: These results demonstrate that miR-148b could inhibit the tumor growth and act as tumor suppressor by inhibiting the proliferation and inducing apoptosis of NSCLC cells by blocking the MAPK/JNK pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação , Interferência de RNA
18.
Sci Rep ; 7(1): 2827, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588261

RESUMO

The Yellow River (or Huanghe and also known as China's Sorrow in ancient times), with the highest sediment load in the world, provides a key link between continental erosion and sediment accumulation in the western Pacific Ocean. However, the exact age of its influence on the marginal sea is highly controversial and uncertain. Here we present high-resolution records of clay minerals and lanthanum to samarium (La/Sm) ratio spanning the past ~1 million years (Myr) from the Bohai and Yellow Seas, the potential sedimentary sinks of the Yellow River. Our results show a climate-driven provenance shift from small, proximal mountain rivers-dominance to the Yellow River-dominance at ~880 ka, a time period consistent with the Mid-Pleistocene orbital shift from 41-kyr to 100-kyr cyclicity. We compare the age of this provenance shift with the available age data for Yellow River headwater integration into the marginal seas and suggest that the persistent influence of the Yellow River on the Chinese marginal seas must have occurred at least ~880 ka ago. To our knowledge, this study provides the first offshore evidence on the drainage history of the Yellow River within an accurate chronology framework.

19.
FEMS Microbiol Lett ; 363(10)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27190241

RESUMO

Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Catecol 2,3-Dioxigenase/genética , Variação Genética , Sedimentos Geológicos/microbiologia , Biodegradação Ambiental , Catecóis/metabolismo , China , Biblioteca Gênica , Hidrocarbonetos Aromáticos/metabolismo , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Águas Residuárias , Poluentes Químicos da Água/metabolismo
20.
Oncotarget ; 7(16): 21853-64, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26942702

RESUMO

We have previously reported that the accumulation of IL-17-producing cells could mediate tumor protective immunity by promoting the migration of NK cells, T cells and dendritic cells in esophageal squamous cell carcinoma (ESCC) patients. However, there were no reports concerning the effect of IL-17A on tumor infiltrating B cells. In this study, we investigated the accumulation of CD20+ B cells in the ESCC tumor nests and further addressed the effect of IL-17A on the migration and cytotoxicity of B cells. There was positive correlation between the levels of CD20+ B cells and IL-17+ cells. IL-17A could promote the ESCC tumor cells to produce more chemokines CCL2, CCL20 and CXCL13, which were associated with the migration of B cells. In addition, IL-17A enhanced the IgG-mediated antibody and complement mediated cytotoxicity of B cells against tumor cells. IL-17A-stimulated B cells gained more effective direct killing capability through enhanced expression of Granzyme B and FasL. The effect of IL-17A on the migration and cytotoxicity of B cells was IL-17A pathway dependent, which could be inhibited by IL-17A inhibitor. This study provides further understanding of the roles of IL-17A in humoral response, which may contribute to the development of novel tumor immunotherapy strategy.


Assuntos
Linfócitos B/imunologia , Carcinoma de Células Escamosas/imunologia , Movimento Celular/imunologia , Citotoxicidade Imunológica/imunologia , Neoplasias Esofágicas/imunologia , Interleucina-17/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Linfócitos B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Humanos , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...