Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034468

RESUMO

Hydrochlorofluorocarbons (HCFCs) are transitional substitutes for chlorofluorocarbons (CFCs). However, they still have the capacity to be ozone-depleting substances (ODSs). Therefore, they are scheduled to be phased out in China by 2030 under the Montreal Protocol. The emission estimates of HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2) in China using atmospheric observations are lacking after 2017, making it hard to understand the effectiveness of the phase-out process of HCFCs in China. Here, we use flask and in situ measurements of HCFC-22 and HCFC-142b during 2018-2021 and inverse modeling to determine the emission magnitude and changes in China. It was determined that China's emissions were 172 ± 40, 154 ± 39, 160 ± 22, and 155 ± 33 Gg yr-1 of HCFC-22 and 8.3 ± 1.8, 7.8 ± 1.6, 7.4 ± 1.7, and 7.9 ± 1.7 Gg yr-1 of HCFC-142b from 2018 to 2021, respectively. Top-down estimates show that HCFC-22 emissions in China were stable, while HCFC-142b emissions were decreasing during 2013-2021, although both substances were in the stage of being phased out during 2013-2021. This study reveals that 46 and 39% of the global HCFC-22 and HCFC-142b emissions, respectively, cannot be traced to certain countries in 2020. We suggest that more studies on HCFC emissions around the world in the future are needed to better safeguard the ozone layer recovery and climate mitigation by ensuring compliance with the Montreal Protocol during HCFC phase-out processes.

2.
Environ Res ; 259: 119549, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964576

RESUMO

Methane (CH4) is the second most abundant greenhouse gas. China is the largest CH4 emitter in the world, with coal mine methane (CMM) being one of the main anthropogenic contributions. Thus, there is an urgent need for comprehensive estimates and strategies for reducing CMM emissions in China. However, the development of effective strategies is currently challenged by a lack of information on temporal variations in the contributions of different CMM sources and the absence of provincial spatial analysis. Here, considering five sources and utilization, we build a comprehensive inventory of China's CMM emissions from 1980 to 2022 and quantify the contributions of individual sources to the overall CMM emissions at the national and provincial levels. Our results highlight a significant shift in the source contributions of CMM emissions, with the largest contributor, underground mining, decreasing from 89% in 1980 to 69% in 2022. Underground abandoned coal mines, which were ignored or underestimated in past inventories, have become the second source of CMM emissions since 1999. From 2011 to 2022, we identified Shanxi, Guizhou, and Shaanxi as the three largest CMM-emitting provinces, while the Emissions Database for Global Atmospheric Research (EDGAR) v8 overestimated emissions from Inner Mongolia, ranking it third. Notably, we observed a substantial decrease (exceeding 1 Mt) in CMM emissions in Sichuan, Henan, Liaoning, and Hunan between 2011 and 2022, which was not captured by EDGAR v8. To develop targeted CMM emission reduction strategies at the provincial level, we classified 31 provinces into four groups based on their CMM emission structures. In 2022, the number of provinces with CMM emissions mainly from abandoned coal mines has exceeded that of provinces with mainly underground mines, which requires attention. This study reveals the characteristics of the source of CMM emissions in China and provides emission reduction directions for four groups of provinces.


Assuntos
Poluentes Atmosféricos , Minas de Carvão , Monitoramento Ambiental , Metano , China , Metano/análise , Poluentes Atmosféricos/análise
3.
Sci Rep ; 14(1): 8753, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627459

RESUMO

In response to the global trend of climate change, it is important to accurately quantify emissions of fully fluorinated greenhouse gases (FFGHGs, referring to SF6/NF3/CF4/C2F6/C3F8/c-C4F8 here). Atmospheric observation-based top-down methods and activity-based bottom-up methods are usually used together to estimate FFGHG emissions at the global and regional levels. In this work, emission gaps at global and regional levels are discussed among top-down studies, between the top-down and bottom-up FFGHG emissions, and among bottom-up emissions. Generally, trends and magnitudes of individual FFGHG emissions among top-down estimates are close to each other within the uncertainties. However, global bottom-up inventories show discrepancies in FFGHG emissions among each other in trends and magnitudes. The differences in emission magnitudes are up to 93%, 90%, 88%, 83%, 87%, and 85% for SF6, NF3, CF4, C2F6, C3F8, and c-C4F8, respectively. Besides, we reveal the insufficient regional TD studies and the lack of atmospheric observation data/stations especially in areas with potential FFGHG emissions. We make recommendations regarding the best practices for improving our understanding of these emissions, including both top-down and bottom-up methods.

4.
Environ Sci Technol ; 58(13): 5750-5759, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506744

RESUMO

1,1-Difluoroethane (HFC-152a) is a hydrofluorocarbon regulated by the Montreal Protocol, and its emissions in China are of concern as China will regulate HFC-152a in 2024. However, no observation-inferred top-down estimates were undertaken after 2017, and substantial gaps existed among previous estimates of China's HFC-152a emissions. Using the atmospheric observations and inverse modeling, this study reveals China's HFC-152a emissions of 9.4 ± 1.7 Gg/yr (gigagrams per year), 10.6 ± 1.8 Gg/yr, and 9.7 ± 1.5 Gg/yr in 2018, 2019, and 2020, respectively. In addition, we display an overall increasing trend during 2011-2020, which is in contrast to the decreasing and steady trend reported by the Emission Database for Global Atmospheric Research (EDGAR) and the Chinese government, respectively. Subsequently, we establish a comprehensive bottom-up emission inventory matching with top-down estimates and thus succeed in explaining the gaps among previous estimates. Furthermore, the contribution of China's emissions to global HFC-152a emission growth increased from 15% during 2001-2010 to >100% during 2011-2020. An emission projection based on our improved inventory shows that the Kigali Amendment (KA) would assist in avoiding 1535.6-4710.6 Gg (251.8-772.5 Tg CO2-eq) HFC-152a emissions during 2024-2100. Our findings indicate relatively accurate China's HFC-152a emissions and provide scientific support for addressing climate change and implementing the KA.


Assuntos
Gases de Efeito Estufa , Ruanda , China , Mudança Climática
5.
Nat Commun ; 15(1): 1725, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409087

RESUMO

According to the Montreal Protocol, the production and consumption of ozone-layer-depleting CCl4 for dispersive applications was globally phased out by 2010, including China. However, continued CCl4 emissions were disclosed, with the latest CCl4 emissions unknown in eastern China. In the current study, based on the atmospheric measurements of ~12,000 air samples taken at two sites in eastern China, the 2021-2022 CCl4 emissions are quantified as 7.6 ± 1.7 gigagrams per year. This finding indicates that CCl4 emissions continued after being phased out for dispersive uses in 2010. Subsequently, our study identifies potential industrial sources (manufacture of general purpose machinery and manufacture of raw chemical materials, and chemical products) of CCl4 emissions.

6.
J Environ Sci (China) ; 140: 319-330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331511

RESUMO

To achieve carbon neutrality, the Chinese government needs to gain a comprehensive understanding of the sources and drivers of greenhouse gas (GHG) emissions, particularly at the county level. Anji County in eastern China is a typical example of an industrial transformation from quarrying to a low-carbon economy. This study analyzed the decoupling types and structural characteristics of GHG emissions and the driving factors of carbon dioxide (CO2) emissions in the Anji from 2006 to 2019, and explored the differences between county-level and provincial-level or city-level results. It was observed that energy-related activities are the main source of GHG emissions in Anji and that economic development is the driving factor behind the increasing CO2 emissions. However, industrial transformation and upgradation coupled with the alternative use of clean energy limit the growth of GHG emissions. This study details the GHG emissions of county during the industrial transformation stage and provides corresponding policy recommendations for county governments.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Efeito Estufa , China , Desenvolvimento Econômico
7.
Environ Sci Technol ; 57(48): 19557-19564, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37978918

RESUMO

Having the highest ozone-depleting potential among hydrochlorofluorocarbons (HCFCs), the production and consumption of HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) are controlled by the Montreal Protocol. A renewed rise in global HCFC-141b emissions was found during 2017-2020; however, the latest changes in emissions across China are unclear for this period. This study used the FLEXible PARTicle dispersion model and the Bayesian framework to quantify HCFC-141b emissions based on atmospheric measurements from more sites across China than those used in previous studies. Results show that the estimated HCFC-141b emissions during 2018-2020 were on average 19.4 (17.3-21.6) Gg year-1, which was 3.9 (0.9-7.0) Gg year-1 higher than those in 2017 (15.5 [13.4-17.6] Gg year-1), showing a renewed rise. The proportion of global emissions that could not be exactly traced in 2020 was reduced from about 70% reported in previous studies to 46% herein. This study reconciled the global emission rise of 3.0 ± 1.2 Gg year-1 (emissions in 2020 - emissions in 2017): China's HCFC-141b emissions changed by 4.3 ± 4.5 Gg year-1, and the combined emissions from North Korea, South Korea, western Japan, Australia, northwestern Europe, and the United States changed by -2.2 ± 2.6 Gg year-1, while those from other countries/regions changed by 0.9 ± 5.3 Gg year-1.


Assuntos
Clorofluorcarbonetos , Clorofluorcarbonetos/análise , Teorema de Bayes , Etano Clorofluorcarbonos , China
8.
Environ Sci Technol ; 57(48): 19487-19496, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948623

RESUMO

Fully fluorinated greenhouse gases (FFGHGs), including sulfur hexafluoride (SF6), nitrogen trifluoride (NF3), and perfluorocarbons (PFCs), have drawn attention because they have long atmospheric lifetimes (up to thousands of years) and high global warming potential. Targeting SF6, NF3, and four PFCs (CF4, C2F6, C3F8, and c-C4F8), this study projects future FFGHG emission patterns in China, explores their mitigation potential, and evaluates the effects of FFGHG emission reduction on the achievement of the country's carbon neutrality goal and climate change. FFGHG emissions are expected to increase consistently, ranging from 506 to 1356 Mt CO2-eq yr-1 in 2060 under the business-as-usual (BAU) scenario. If mitigation strategies are sufficiently employed, FFGHG emissions under three mitigation scenarios: Technologically Feasible 2030, Technologically Feasible 2050, and Technologically Feasible 2060, will eventually decrease to approximately 49-78, 70-110, and 98-164 Mt CO2-eq yr-1 in 2060, respectively, compared to the BAU scenario. Extensive implementation of FFGHG emission mitigation technologies will curb temperature rise by 0.008-0.013 °C under the slowest mitigation scenario, compared to 0.013-0.026 °C under the BAU scenario. Well-coordinated policies and reforms on FFGHG emission mitigation are recommended to prevent potential adverse effects on the climate to a certain extent.


Assuntos
Fluorocarbonos , Gases de Efeito Estufa , Mudança Climática , Efeito Estufa , Dióxido de Carbono/análise , Fluorocarbonos/análise , China
9.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656597

RESUMO

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Assuntos
Clorofórmio , Ozônio Estratosférico , Regiões Antárticas , China , Desinfecção
10.
Artigo em Inglês | MEDLINE | ID: mdl-37239556

RESUMO

Volatile organic compounds (VOCs) are major indoor air pollutants that contain several toxic substances. However, there are few studies on health risk assessments of indoor VOCs in China. This study aimed to determine the concentration characteristics of VOCs on college campuses by collecting VOC samples from different locations on campus during different seasons combined with the exposure times of college students in each location obtained from a questionnaire survey to assess the possible health risks. The highest total VOC concentration (254 ± 101 µg/m3) was in the dormitory. The seasonal variation of TVOC concentrations was related to the variation of emission sources in addition to temperature. Health risk assessments of VOCs were evaluated using non-carcinogenic and carcinogenic risk values, represented by hazard quotient (HQ) and lifetime cancer risk (LCR), respectively. The non-carcinogenic risks at all sampling sites were within the safe range (HQ < 1). Dormitories had the highest carcinogenic risk, whereas the carcinogenic risk in the other three places was low (with LCR < 1.0 × 10-6). Moreover, 1,2-dichloroethane was identified as a possible carcinogenic risk substance in the dormitory due to its high LCR (1.95 × 10-6). This study provides basic data on health risks in different locations on campus and a basis for formulating measures to improve people's living environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Neoplasias , Compostos Orgânicos Voláteis , Humanos , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Universidades , Poluentes Atmosféricos/análise , Medição de Risco , Carcinógenos/análise , Carcinogênese , China/epidemiologia , Poluição do Ar em Ambientes Fechados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA