Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 199: 110863, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37276661

RESUMO

In the present work, the Doppler Shift Attenuation method (DSAM) was used to analyze the observed lineshapes of transitions from excited states in 45Sc, populated in the reaction 36Ar + 12C at a beam energy of 145 MeV. The interpretation and comparison of the experimental results have been performed with large-scale shell model calculations, involving different interactions like: GX1A, GX1J, FPD6, KB3 and ZBM2. KB3 and FPD6 (present work) interactions in the negative parity states, and in positive parity states ZBM2 are most pre-eminent in reproducing the results, due to the large configuration space describing strong collective effects. Furthermore, the present work also looks at the details of the shell model helping in improving the understanding for the occupancy of orbitals. The present investigation suggests the observation of stronger collectivity for positive parity states over negative parity states with predicted enhanced collectivity of states in 45Sc nucleus.

2.
Phys Rev Lett ; 128(24): 242502, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776479

RESUMO

The isomer depletion of ^{93m}Mo was recently reported [Chiara et al., Nature (London) 554, 216 (2018)NATUAS0028-083610.1038/nature25483] as the first direct observation of nuclear excitation by electron capture (NEEC). However, the measured excitation probability of 1.0(3)% is far beyond the theoretical expectation. In order to understand the inconsistency between theory and experiment, we produce the ^{93m}Mo nuclei using the ^{12}C(^{86}Kr,5n) reaction at a beam energy of 559 MeV and transport the reaction residues to a detection station far away from the target area employing a secondary beam line. The isomer depletion is expected to occur during the slowdown process of the ions in the stopping material. In such a low γ-ray background environment, the signature of isomer depletion is not observed, and an upper limit of 2×10^{-5} is estimated for the excitation probability. This is consistent with the theoretical expectation. Our findings shed doubt on the previously reported NEEC phenomenon and highlight the necessity and feasibility of further experimental investigations for reexamining the isomer depletion under low γ-ray background.

3.
Phys Rev Lett ; 121(2): 022502, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085703

RESUMO

Lifetimes of the first excited 2^{+} and 4^{+} states in the extremely neutron-deficient nuclide ^{172}Pt have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+})=0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segré chart. The observation adds to a cluster of a few extremely neutron-deficient nuclides of the heavy transition metals with neutron numbers N≈90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios observed in these cases. Such low values cannot, e.g., be explained within the framework of the geometrical collective model or by algebraic approaches within the interacting boson model framework. It is proposed that the group of B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios in the extremely neutron-deficient even-even W, Os, and Pt nuclei around neutron numbers N≈90-94 reveal a quantum phase transition from a seniority-conserving structure to a collective regime as a function of neutron number. Although a system governed by seniority symmetry is the only theoretical framework for which such an effect may naturally occur, the phenomenon is highly unexpected for these nuclei that are not situated near closed shells.

4.
Sheng Wu Gong Cheng Xue Bao ; 16(4): 433-6, 2000 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-11051813

RESUMO

Transformation-competent artificial chromosome (TAC) vector is able to clone and transfer large DNA fragments in plants and is a powerful tool for plant gene isolation and transformation. To clone important genes from wheat, a TAC genomic library was constructed from nuclear DNA of a 6VS/6AL wheat-Haynaldia villosa translocation line that harbor the gene Pm21 for resistance to powdery mildew. The library consists of 2.1 x 10(6) clones with an average DNA insert size of 35 kb, and represents in total 4.9 genome equivalents. The library was stored as clone pools in 96-well plates, and each pool contained about 1000 clones. TAC clones containing gene(s) of interest can be screened by a pooled-PCR/colony-hybridization strategy.


Assuntos
Cromossomos Artificiais , Biblioteca Gênica , Transformação Genética , Translocação Genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...