Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 171: 115440, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955059

RESUMO

Managing waterborne and water-related diseases is one of the most critical factors in the aftermath of hurricane-induced natural disasters. The goal of the study was to identify water-quality impairments in order to set the priorities for post-hurricane relief and to guide future decisions on disaster preparation and relief administration. Field investigations were carried out on St. Thomas, U.S. Virgin Islands as soon as the disaster area became accessible after the back-to-back hurricane strikes by Irma and Maria in 2017. Water samples were collected from individual household rain cisterns, the coastal ocean, and street-surface runoffs for microbial concentration. The microbial community structure and the occurrence of potential human pathogens were investigated in samples using next generation sequencing. Loop mediated isothermal amplification was employed to detect fecal indicator bacteria, Enterococcus faecalis. The results showed both fecal indicator bacteria and Legionella genetic markers were prevalent but were low in concentration in the water samples. Among the 22 cistern samples, 86% were positive for Legionella and 82% for Escherichia-Shigella. Enterococcus faecalis was detected in over 68% of the rain cisterns and in 60% of the coastal waters (n = 20). Microbial community composition in coastal water samples was significantly different from cistern water and runoff water. Although identification at bacterial genus level is not direct evidence of human pathogens, our results suggest cistern water quality needs more organized attention for protection of human health, and that preparation and prevention measures should be taken before natural disasters strike.


Assuntos
Tempestades Ciclônicas , Qualidade da Água , Fezes , Humanos , Ilhas , Chuva , Ilhas Virgens Americanas , Microbiologia da Água
2.
J Hazard Mater ; 352: 165-171, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29609148

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that are ubiquitous in the environment. The physical and chemical properties of PBDEs make them difficult to degrade, with the conventional remediation methods being relatively inefficient. In this study, the reactivity of zero valent zinc (ZVZ) toward 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was evaluated under aqueous solution. First-order rate constants (kobs) for BDE-47 disappearance increased with decreased pH, which is attributed to the dissolution of surface zinc oxides that promote the contact between the active site on zinc surface and BDE molecules. The kobs of ten investigated PBDEs in ZVZ system are positively correlated with the energy of lowest unoccupied orbitals (ELUMO) of PBDEs (R2 = 0.902). The debromination pathways of BDE-47 in ZVZ system are: BDE-47 → BDE-28 → BDE-15 → BDE-3 → DE, which is the same to the debromination pathways of BDE-47 in zero valent iron (ZVI) in previous study. In addition, the singly occupied molecular orbitals (SOMOs) of the BDE anions can well reflect the actual debromination pathways of PBDEs by comparing the size of the CBr antibonding characterized lobes. Our results suggest that the debromination of PBDEs by ZVZ is based on the electron transfer mechanism, and the SOMOs of BDE anions can be used to predict the debromination pathways of untested PBDEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...