Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690687

RESUMO

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Assuntos
Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteólise , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Descoberta de Drogas , Células Hep G2 , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
2.
Bioorg Chem ; 147: 107386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643565

RESUMO

Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Proteólise , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Proteólise/efeitos dos fármacos , Animais , Descoberta de Drogas , Estrutura Molecular , Quimera de Direcionamento de Proteólise
3.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656184

RESUMO

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Assuntos
Benzofuranos , Indanos , Fármacos Neuroprotetores , Piperidinas , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Piperidinas/farmacologia , Piperidinas/síntese química , Piperidinas/química , Indanos/farmacologia , Indanos/síntese química , Indanos/química , Benzofuranos/farmacologia , Benzofuranos/síntese química , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Sobrevivência Celular/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico
4.
Arch Pharm (Weinheim) ; 357(5): e2300603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290060

RESUMO

Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 µM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent ß-amyloid (Aß) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aß self-aggregation.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Antioxidantes , Barreira Hematoencefálica , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Triptofano , Doença de Alzheimer/tratamento farmacológico , Humanos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Animais , Triptofano/farmacologia , Triptofano/química , Triptofano/análogos & derivados , Triptofano/síntese química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ratos , Acetilcolinesterase/metabolismo , Estrutura Molecular , Células PC12 , Relação Dose-Resposta a Droga , Modelos Moleculares
5.
RSC Adv ; 13(45): 31772-31784, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908648

RESUMO

The objective of this study was to investigate the anticancer activities of biodegradable polymeric micelles composed of monomethoxy poly(ethylene glycol), polylactic acid, and nitric oxide (mPEG-PLA-NO) loaded with paclitaxel (PTX) as a nanomedicine delivery system. We aimed to compare the anticancer effects of these NO/PTX micelles with PTX alone and elucidate their mechanism of action. We evaluated the impact of NO/PTX and PTX on cell viability using Cell Counting Kit-8 (CCK8) assays conducted on the Bel-7402 liver cancer cell line. Additionally, we employed H22 xenografted mice to assess the in vivo tumor growth inhibitory activity of NO/PTX. To examine the cytotoxicity of NO/PTX, the intracellular levels of reactive oxygen species (ROS), and the expression of ferroptosis-related proteins, we conducted experiments in the presence of the ferroptosis inhibitor ferrostatin-1 (Fer-1) or the ROS inhibitor N-acetyl cysteine (NAC). Furthermore, we investigated the expression of endoplasmic reticulum stress (ERS) and apoptosis-associated proteins. Our results demonstrated that NO/PTX exhibited enhanced anticancer effects compared to PTX alone in both Bel-7402 cells and H22 xenografted mice. The addition of Fer-1 or NAC reduced the anticancer activity of NO/PTX, indicating the involvement of ferroptosis and ROS in its mechanism of action. Furthermore, NO/PTX modulated the expression of proteins related to ERS and apoptosis, indicating the activation of these cellular pathways. The anticancer effects of NO/PTX in liver cancer cells were mediated through the induction of ferroptosis, pyroptosis, ERS, and apoptosis-associated networks. Ferroptosis and pyroptosis were activated by treatment of NO/PTX at low concentration, whereas ERS was induced to trigger apoptosis at high concentration. The superior anti-tumor effect of NO/PTX may be attributed to the downregulation of a multidrug resistance transporter and the sensitization of cells to PTX chemotherapy. In summary, our study highlights the potential of mPEG-PLA-NO micelles loaded with PTX as a nanomedicine delivery system for liver cancer treatment. The observed enhancement in anticancer activity, combined with the modulation of key cellular pathways, provides valuable insights into the therapeutic potential of NO/PTX in overcoming resistance and improving treatment outcomes in liver cancer patients.

7.
J Am Chem Soc ; 145(41): 22639-22648, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788450

RESUMO

Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (oNv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis). We demonstrated that irradiation of oNv-caged thiols with UV light could release free thiols that are rapidly oxidized by locally released byproduct nitrosoarene, leading to a "break-to-bond" fashion. This strategy is highlighted by the in situ restoration of the antimicrobial peptide tachyplesin I (TPI) from its external disulfide-caged analogue TPI-1. TPI-1 exhibits a distorted structure and a diminished function. However, upon irradiation, the ß-hairpin structure and membrane activity of TPI were largely restored via rapid intramolecular disulfide formation. Our study proposes a powerful method to regulate the conformation and function of peptides in a spatiotemporal manner, which has significant potential for the design of disulfide-centered light-responsive systems.


Assuntos
Dissulfetos , Compostos de Sulfidrila , Dissulfetos/química , Estrutura Secundária de Proteína , Compostos de Sulfidrila/química
8.
Bioorg Chem ; 132: 106346, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638655

RESUMO

There are no highly effective and safe medicines for clinical treatment of ischemic stroke, although the natural product 3-n-butylphthalide (NBP) has been approved in China for mild and moderate ischemic stroke. To discover more potent anti-cerebral ischemic agents and overcome the low stability by phthalide derivatives, benzofuran-3-one was selected as a core moiety and two types of nitric oxide (NO)-donating groups were incorporated into the structure. In this work, a series of 2,6-disubstituted benzofuran-3-one derivatives were designed and synthesised as NBP analogues, and tested as neuroprotective and antioxidative agents. Compounds 5 (without an NO donor) and 16 (with an NO donor) displayed more potent neuroprotective effects than the established clinical drugs Edaravone and NBP. More importantly, 5 and 16 also exhibited good antioxidative activity without cytotoxicity in rat primary neuronal and PC12 cells. Most active compounds showed good blood-brain barrier permeability in a parallel artificial membrane permeability assay. Furthermore, compound 5 reduced the ischemic infarct area significantly in rats subjected to ischemia/reperfusion injury, downregulated ionised calcium-binding adaptor molecule 1 and glial fibrillary acidic protein in inflammatory cells, and upregulated nerve growth factor.


Assuntos
Benzofuranos , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Antioxidantes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Benzofuranos/química
9.
Bioorg Med Chem ; 78: 117146, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580744

RESUMO

Here, we have designed and synthesized a series of melatonin-alkylbenzylamine hybrids as multitarget agents for the treatment of Alzheimer's disease (AD). Most of them exhibited a potent multifunctional profile involving cholinesterase inhibition and antioxidant effects. Among these compounds, compound 5 was most the potent antioxidant (ORAC = 5.13) and also an excellent selective inhibitor of BuChE (huBuChE IC50 = 1.20 µM, huAChE IC50 = 177.49 µM, SI = 147.91). Moreover, kinetic study indicated compound 5 was a mixed-type inhibitor for huBuChE. Furthermore, it could induce expression of the Nrf2 as well as its downstream markers at the protein level in cells. More importantly, compound 5 display no acute toxicity in mice at doses up to 2500 mg/kg. And we found compound 5 could improve memory function of scopolamine-induced amnesia mice. These results highlighted compound 5 as a possible hit molecule for further investigation of new anti-AD drugs.


Assuntos
Doença de Alzheimer , Melatonina , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Butirilcolinesterase/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia
10.
J Asian Nat Prod Res ; 25(6): 547-556, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36036184

RESUMO

Three new compounds, (8S)-2,2,7,7-tetramethyl-8-hydroxymethyl-6H-indanone-(2,3-b)-2H-pyran-9-O-ß-d-glucopyranoside (1), (7S,8S)-2,2,7-trimethyl-7-hydroxymethyl-8-hydroxy-2,7,8,9-tetrahydro-6H-naphtho-(2,3-b)-pyran-10-O-ß-d-glucopyranoside (2), 1-deoxy-1-(3,4-dihydro-7-methyl-2,3-dioxo-1(2H)-quinoxalinyl)pentitol-6-carboxylic acid (3), as well as six known compounds (4-9), were obtained. Their structures were determined by spectroscopy and comparison with NMR data of related compounds. Absolute configurations were determined by ECD spectroscopy. The hepatoprotective effects of these compounds were investigated on HepG2 and LO2 cells lines; compounds 1, 2, and 4 displayed moderate activity.


Assuntos
Glicosídeos , Estrutura Molecular , Glicosídeos/química , Linhagem Celular , Espectroscopia de Ressonância Magnética
11.
Eur J Med Chem ; 242: 114630, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987018

RESUMO

Alzheimer's disease (AD) possessed intricate pathogenesis. Currently, multi-targeted drugs were considered to have the potential to against AD by simultaneously triggering molecules in functionally complementary pathways. Hence, a series of molecules based on the pharmacophoric features of Dimethyl fumarate, Tranilast, and Dithiocarbate were designed and synthesized. These compounds showed significant AChE inhibitory activity in vitro. Among them, compound 4c2 displayed the mighty inhibitory activity to hAChE (IC50 = 0.053 µM) and held the ability to cross the BBB. Kinetic study and molecular docking pointed out that 4c2 bound well into the active sites of hAChE, forming steady and sturdy interactions with key residues in hAChE. Additionally, 4c2 as an Nrf2 activator could promote the nuclear translocation of Nrf2 protein and induce the expressions of Nrf2-dependent enzymes HO-1, NQO1, and GPX4. Moreover, 4c2 rescued BV-2 cells from H2O2-induced injury and inhibited ROS accumulation. For the anti-neuroinflammatory potential of 4c2, we observed that 4c2 could lower the levels of pro-inflammatory cytokines (NO, IL-6 and TNF-α) and suppressed the expressions of iNOS and COX-2. In particular, 4c2 was well tolerated in mice (2500 mg/kg, p.o.) and efficaciously recovered the memory impairment in a Scopolamine-induced mouse model. Overall, these results highlighted that 4c2 was a promising multi-targeted agent for treating AD.


Assuntos
Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Fumarato de Dimetilo , Peróxido de Hidrogênio , Interleucina-6 , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Escopolamina , Fator de Necrose Tumoral alfa , ortoaminobenzoatos
12.
Chem Biodivers ; 19(8): e202200439, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703003

RESUMO

The fragments, 3,4-(methylenedioxy)cinnamic acid amide and dithiocarbamates, have received increasing attention because of their multiple pharmacological activities in recent years, especially in anti-tumor. We synthesized 17 novel 3,4-(methylenedioxy)cinnamic acid amide-dithiocarbamate derivatives based on the principle of pharmacophore assembly and discovered that compound 4a7 displayed the most potent antiproliferative activity against HeLa cells with IC50 value of 1.01 µM. Further mechanistic studies revealed that 4a7 triggered apoptosis in HeLa cells via activating mitochondria-mediated intrinsic pathways and effectively inhibited colony formation. Also, 4a7 had the ability to arrest cell cycle in the G2/M phase as well as to inhibit the migration in HeLa cells. More importantly, acute toxicity experiments showed that 4a7 had good safety in vivo. All the results suggested that compound 4a7 might serve as a promising lead compound that merited further attention in future anti-tumor drug discovery.


Assuntos
Amidas , Antineoplásicos , Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cinamatos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Relação Estrutura-Atividade
13.
Drug Des Devel Ther ; 16: 1495-1514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611357

RESUMO

Background: Alzheimer's disease (AD) belongs to neurodegenerative disease, and the increasing number of AD patients has placed a heavy burden on society, which needs to be addressed urgently. ChEs/MAOs dual-target inhibitor has potential to treat AD according to reports. Purpose: To obtain effective multi-targeted agents for the treatment of AD, a novel series of hybrid compounds were designed and synthesized by fusing the pharmacophoric features of 3,4-dihydro-2 (1H)-quinolinone and dithiocarbamate. Methods: All compounds were evaluated for their inhibitory abilities of ChEs and MAOs. Then, further biological activities of the most promising candidate 3e were determined, including the ability to cross the blood-brain barrier (BBB), kinetics and molecular model analysis, cytotoxicity in vitro and acute toxicity studies in vivo. Results: Most compounds showed potent and clear inhibition to AChE and MAOs. Among them, compound 3e was considered to be the most effective and balanced inhibitor to both AChE and MAOs (IC50=0.28 µM to eeAChE; IC50=0.34 µM to hAChE; IC50=2.81 µM to hMAO-B; IC50=0.91 µM to hMAO-A). In addition, 3e showed mixed inhibition of hAChE and competitive inhibition of hMAO-B in the enzyme kinetic studies. Further studies indicated that 3e could penetrate the BBB and showed no toxicity on PC12 cells and HT-22 cells when the concentration of 3e was lower than 12.5 µM. More importantly, 3e lacked acute toxicity in mice even at high dose (2500 mg/kg, P.O.). Conclusion: This work indicated that compound 3e with a six-carbon atom linker and a piperidine moiety at terminal position was a promising candidate and was worthy of further study.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Quinolonas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Hidroquinonas , Cinética , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase , Doenças Neurodegenerativas/tratamento farmacológico , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Ratos , Relação Estrutura-Atividade
14.
Metabolites ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35323681

RESUMO

Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.

16.
J Med Chem ; 64(24): 17545-17571, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34889100

RESUMO

Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.


Assuntos
Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Descoberta de Drogas , Humanos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Relação Estrutura-Atividade
17.
Molecules ; 26(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684673

RESUMO

A series of halogenated 1,5-diarylimidazole compounds were synthesized and their inhibitory effects on LPS-induced PGE2 production in RAW 264.7 cells were evaluated. A wide variety of 2,4-, 4-, and 2-halogenated 5-aryl-1-(4-methylsulfonylphenyl)imidazoles were synthesized for SAR study via two different pathways. Overall, 4-halogenated 5-aryl-1-(4-methylsulfonylphenyl)imidazoles, regardless of the species of halogen, exhibited very strong inhibitory activities of PGE2 production. Among them, 4-chloro-5-(4-methoxyphenyl)-1-(4-methylsulfonylphenyl)imidazole (3, IC50 3.3 nM ± 2.93), and 4-chloro-5-(4-chlorophenyl)-1-(4-methylsulfonylphenyl)imidazole (13, IC50 5.3 nM ± 0.23) showed the best results.


Assuntos
Dinoprostona/biossíntese , Imidazóis , Células RAW 264.7/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Halogenação , Imidazóis/síntese química , Imidazóis/farmacologia , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361634

RESUMO

Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.


Assuntos
Antineoplásicos/farmacocinética , Docetaxel/farmacocinética , Portadores de Fármacos/farmacocinética , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Masculino , Micelas , Ratos , Ratos Sprague-Dawley
19.
Eur J Med Chem ; 221: 113488, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991963

RESUMO

Naturally occurring cyclic antimicrobial peptides (AMPs) such as tyrocidine A (Tyrc A) and gramicidin S (GS) are appealing targets for the development of novel antibiotics. However, their therapeutic potentials are limited by undesired hemolytic activity and relatively poor activity against Gram-negative bacteria. Inspired by polycationic lipopeptide polymyxin B (PMB), the so called 'last-resort' antibiotic for the treatment of infections caused by multidrug-resistant Gram-negative bacteria, we synthesized and biologically evaluated a series of polycationic analogues derived from Tyrc A. We were able to obtain peptide 8 that possesses 5 positive charges exhibiting potent activities against both Gram-negative and Gram-positive bacteria along with totally diminished hemolytic activity. Intriguingly, antibacterial mechanism studies revealed that, rather than the 'pore forming' model that possessed by Tyrc A, peptide 8 likely diffuses membrane in a 'detergent-like' manner. Furthermore, when treating mice with peritonitis-sepsis, peptide 8 showed excellent antibacterial and anti-inflammatory activities in vivo.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Polimixina B/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tirocidina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polimixina B/química , Relação Estrutura-Atividade , Tirocidina/síntese química , Tirocidina/química
20.
Expert Opin Ther Pat ; 31(9): 795-808, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33896337

RESUMO

Introduction: Type 2 diabetes is a rapid-growing complex chronic metabolic disease characterized by hyperglycemia due to lessened insulin secretion, insulin resistance and hepatic glucose overproduction. GPR119 is a class A of G protein-coupled receptor, expressed on certain enteroendocrine L and K cells in the small intestine and by ß-cells within the islets of Langerhans of the pancreas. Activation of GPR119 stimulates the secretion of glucagon-like peptide-1 (GLP-1) in the intestinal tract and glucose-dependent release of insulin in pancreatic ß-cells.Area covered: This review summarized the reported patents on GPR119 agonists from 2014 to present. The authors described the structural features of these novel synthetic molecules and compared their biological activities (including in vitro and in vivo) as potent GPR119 agonists for the treatment of diabetes.Expert opinion: GPR119 agonists remain the advantage of stimulating both insulin and incretin release in a glucose-dependent manner over other hypoglycemic agents, although some GPR119 agonist clinical candidates have been discontinued in Phase І or Phase II. GPR119 agonists will succeed to be developed as anti-diabetic drugs after accumulated scaffolds of agonists are discovered and the crystallographic structure of GPR119 is elucidated. The synergic effect of GPR119 agonist and DPP-4 inhibitor will also elicit a benefit for the new therapeutic of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Desenvolvimento de Medicamentos , Sinergismo Farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Incretinas/metabolismo , Insulina/metabolismo , Patentes como Assunto , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...